EC550- Selected Topics in Communications

CREDIT HOURS

3 Hours

CONTACT HOURS (Hours/week)

Lecture: 2; Tutorial: 2

COURSE COORDINATOR

Dr. Ashraf Mamdouh

TEXT BOOK

David Tse, and Pramod Viswanath, "Fundamentals of Wireless Communication", Cambridge Press

COURSE DESCRIPTION

Characteristics of Multipath Fading Channels - Principle of MCM/OFDM - OFDM as multicarrier transmission: Implementation, guard interval (Cyclic Prefix), Characteristics - BER in AWGN Channel -BER of CPSK-Based OFDM System in Rayleigh Fading Channels - BER in Frequency Selective and Time Selective Rayleigh Fading Channels - Optimum Number of Subcarriers and Optimum Length of Guard Interval -Applications of OFDM Digital Audio Broadcasting Terrestrial Digital Video Broadcasting - Bluetooth: Basic concepts-Protocol Architecture -Encryption & Security -Link Management -Logical link control -Ultra Wideband: Basic properties of UWB signals and systems -Generation of UWB -UWB channel modeling - UWB Communications - Modulation methods for UWB -UWB Transmitter -UWB Receiver.

PREREQUISITE:

EC 422

RELATION OF COURSE TO PROGRAM

Elective

COURSE INSTRUCTION OUTCOMES

The student will be able to understand OFDM technique with all its aspects and DVB as an application. Bluetooth technology: Basic concepts-Protocol Architecture -Encryption & Security -Link Management -Logical link control UWB properties, generation and channel modeling and the design

TOPICS COVERED

- Characteristics of Multipath Fading Channels
- Principle and History of MCM/OFDM: The concept of multicarrier transmission OFDM as multicarrier transmission
- Implementation of OFDM by FFT OFDM with guard interval (Cyclic Prefix)
- OFDM Characteristics: Bit Error Rate in AWGN Channel Bit Error Rate of CPSK-Based OFDM System in Rayleigh Fading Channels

- Bit Error Rate of DPSK-Based OFDM System in Rayleigh Fading Channels Bit Error Rate in Frequency Selective and Time Selective Rayleigh Fading Channels.
- Optimum Number of Subcarriers and Optimum Length of Guard Interval.
- Applications of OFDM: Digital Audio Broadcasting Terrestrial Digital Video Broadcasting
- Basic concepts of Bluetooth Protocol Architecture
- Encryption & Security of Bluetooth
- Bluetooth Link Management Logical link control
- Simulation of a Bluetooth system
- Ultra Wideband: Basic properties of UWB signals and systems
- Generation of UWB UWB channel modeling
- UWB Communications Modulation methods for UWB
- UWB Transmitter UWB Receiver

CONTRIBUTION OF COURSE TO MEET THE REQUIREMENTS OF CRITERION 5:

Professional component Content						
Math and	Basic	Engineering Topics	General Education	Other		
Sciences						
		✓				

RELATIONSHIP OF COURSE TO STUDENT OUTCOMES:

Stud	Course	
		aspects
A	An ability to apply knowledge of mathematics, science, and	$a_1 a_2$
	engineering	
В	An ability to design and conduct experiments, analyze and interpret	
	data.	
C	An ability to design a system, component, or process to meet desired	$c_1 c_2$
	needs within realistic constraints such as economics, environmental,	
	social, political, ethical, health, and safety, manufacturability, and	
	sustainability	
D	An ability to function on multi-disciplinary teams.	
E	An ability to identify, formulate, and solve engineering problems	$e_1 e_2 e_3$
F	An understanding of professional and ethical responsibility	$f_1 f_2$
G	An ability to communicate effectively	
Н	The broad education necessary to understand the impact of	$h_1 h_2$
	engineering solutions in a global, economic, environmental, and	
	social content	
Ι	A recognition of the need for, and an ability to engage in life-long	$i_1 i_2$
	learning.	
J	A knowledge of contemporary issues within and outside the	
	electrical engineering profession.	
k	An ability to use the techniques, skills, and modern engineering	
	tools necessary for electrical engineering practice.	