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Abstract  —  Moments of digital images are widely used to 

extract invariant image features. Efficient computation of 
geometric moments is extremely important where all kinds of 
image moments are expressed as a combination of these 
geometric moments. In this paper, a new symmetry-based 
efficient method is proposed for efficient computation of 
geometric moments. Three types of symmetry are applied to 
reduce the computational complexity of 2D geometric 
moments by 87%. A comparison with other existing methods 
is performed where the numerical experiments ensure the 
efficiency of the proposed method. 

Index Terms  —  Geometric moments, symmetry property, 
gray level images, fast computation, orthogonal moments. 

I. INTRODUCTION 

 Moments and moment invariants of digital images are 

widely used in image processing, pattern recognition and 

computer vision. Aircraft identification, scene matching, 

shape analysis, image normalization, character 

recognition, accurate position detection, color texture 

recognition, image retrieval and various other image 

processing tasks are examples for the implementation of 

geometric moments. The recent excellent book of Flusser 

and his coauthors [1] gives an overview of the subject. 

 Computational process of geometric moments and 

moment invariants encounter two challenging problems. 

The first problem is the accuracy, where approximate 

computation of geometric moments results in a set of 

inaccurate moments. The degraded accuracy negatively   

affects the performance of the geometric moment 

invariants. The second problem is concerned with highly 

computational requirements especially for large images.  

 The direct method depends on using zeros-order 

approximation. This method is time consuming and 

produces a significant error. Several methods are proposed 

to overcome these challenging problems.  

 Spiliotis and Mertzios [2] proposed a novel method 

which employs binary image representation by non-

overlapping rectangular homogeneous blocks, and then the 

image moments are calculated as the sum of the moments 

of all blocks. Flusser [3] refined this method. Sossa et. al. 

[4] proposed a new algorithm based on a morphologic 

decomposition of the binary image into a set of closed 

disks. Kuo. et. al. [5], extended the algorithm of Spiliotis 

and Mertzios to approximately compute the lower order 

moments for a gray level image using the block 

representation. Recently, Papakostas et. al [6] extended the 

method of Spiliotis and Mertzios to compute geometric 

moments for gray level images.  

 Liao and Pawlak [7] used another approach. They 

proposed a formula for computing the 2D geometric 

moments of a digital image. They numerically integrate the 

monomial functions over digital image pixels by using 

Simpson’s integration rule. Hosny [8] modified this 

method where he evaluates the double integration 

analytically which completely removes the numerical 

approximation error. In addition to this contribution, 

Hosny [8] proposed an algorithm for fast computation of 

the exact geometric moments. Chong et. al. [9] follows the 

same approach of Hosny and employed the symmetry 

property to reduce the computational complexity of the 

exact 2D geometric moments. Recently, Hosny [10] 

applied a new idea of symmetry to efficiently compute 

exact 2D geometric moments and employed these exact 

moments to compute a set of accurate radial moments. 

Complexity analysis shows that, the recent symmetry-

based method of Hosny [10] is superior to its 

corresponding method of Chong [9].  

 This paper proposes a new method for efficient 

computation of accurate geometric moments for both 

binary and gray level images. Three types of symmetry 

property are applied to reduce %87 where the set of 2D 

geometric moments are computed exactly by using a 

mathematical integration of the monomials over image 

pixels.    

 The rest of the paper is organized as follows: In 

section II, an overview of geometric moments is given. 

The proposed method is described in section III. Results of 

numerical experiments are presented in section IV. 

Conclusion and concluding remarks are presented in 

section V. 

II. OVERVIEW OF GEOMETRIC MOMENTS 

Two-dimensional geometric moments are defined as 

the projection of the image intensity function ),( yxf  onto 



the nominal qp yx . The 2D geometric moments of order (p 

+ q) are defined as: 
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For digital images of size NN ×  equation (1) usually 

approximated by replacing integrations by summations as 

follows: 
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Where x∆ and y∆ are the pixel width in x-and y-

direction respectively. Equation (2) is so-called direct 

method for geometric moment's computations, which is the 

approximated version using zeroth-order approximation 

(ZOA).  

As indicated by Liao and Pawlak [7], equation (2) is 

inaccurate approximation of equation (1). To improve the 

accuracy, they proposed to use the approximated form: 
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Liao and Pawlak proposed an alternative extended 

Simpson’s rule to evaluate the double integral defined by 

equation (4), then used to calculate the geometric moments 

defined by equation (3).  

III. PROPOSED METHOD 

The proposed method is presented in this section. Image 

and object mapping is discussed in the first subsection. 

The symmetry property for the 2D geometric moments is 

discussed in the second subsection where the concept of 

augmented image intensity functions is discussed. The 

fourth subsection is devoted to discuss the efficient 

computation of exact 2D geometric moments. 

A. Image Mapping 

In the literature of digital image processing, the 

origin of a 2D digital image of size NN ×  is located on 

the upper left of the image and its indices, i  and j  

increase from left to right and from top to bottom, 

respectively, i.e. Nji ,........,2,1, =  as shown in Fig.1a. A 

kind of transformation is applied to the input image where 

the transformed image is defined in the square 

[ ] [ ]1,11,1 −×− as shown in Fig.1b. This transformation 

could be done by using the following equations: 
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With Nji ....,.........3,2,1, = . The mapped image is 

represented by NN × array of pixels where centers of these 

pixels are the points ( )ji yx , .  The image intensity function 

is defined for this set of discrete points 

( ) [ ] [ ]1,11,1, −×−∈ji yx  as shown in Fig.1b. The sampling 

intervals in the x -and y -directions are iii xxx −=∆ +1 , 

jjj yyy −=∆ +1 respectively. In the literature of digital 

image processing, the intervals ix∆  and jy∆  are fixed at 

the constant value equal to Nyx ji 2=∆=∆ . It is clear 

that, the centre of input image is coinciding with the center 

of the square [ ] [ ]1,11,1 −×− . 

 

 
Fig. 1. Image mapping: (a) Original image, (b) Mapped 
image. 
 

B. Symmetry for 2D Geometric Moments 

The x- and y-axis in addition to the two lines yx =  and 

yx −=  divided the transformed image into eight octants 

as shown in Fig. 2. Three types of symmetry could be 

observed and explored. In the first type; each point 1P  in 

the first octant with the Cartesian coordinates ( )ji yx ,  

has three similar points in other three octants as shown in 

Fig.3. These points are 4P , 5P and 8P , where the index 

associated with the point symbol is referring to the octant 

number.    

The second type of symmetry is concerned with the rest 

of the eight points where the subscripts i and j are 

interchanged. The point ( )ij yxP ,2  in the second octant 

has three sibling points 3P , 6P  and 7P . It is must be noted 

that all of these eight points have the same radial distance 

to the origin point. The third type of symmetry is 



concerned with the points lies on the symmetrical lines, 

yx =  and yx −= . These points are ( )ii xxQ ,1 , 2Q , 3Q  

and   4Q . All points of three symmetrical types and their 

Cartesian coordinates are shown in the table (1). 

 
Fig. 2. The x- axis, y-axis, the lines yx =  and yx −=  

divided the transformed image into eight octants 

 

 
 

Fig. 3. Three types of symmetry 

 

Since the points 1P , 2P , 3P , 4P , 5P , 6P , 7P and 8P has 

the same radial distance from the coordinate origin then; 

the numerical value of  qp yx  will be dependent on 

whatever p and q are even or odd. Based on this symmetry 

property and the results obtained in table (1), the image 

intensity function in different octants could be represented 

by only one augmented function.  

This function is a combination of the image intensity 

functions in the first, fourth, fifth and eighth octants 

respectively. The augmented function is defined as 

follows: 

 

Case 1: p =Even, q =Eevn: 

                     ( ) 85411 , ffffyxf jik +++=                   (6.1) 

Case 2: p =Even, q =Odd: 

                     ( ) 85411 , ffffyxf jik −−+=                   (6.2)     

Case 3: p =Odd, q =Even: 

                     ( ) 85411 , ffffyxf jik +−−=                   (6.3) 

Case 4: p =Odd, q =Odd: 

                     ( ) 85411 , ffffyxf jik −+−=                   (6.4) 

 

Similar to the first type of symmetry, the second one 

could be represented by only one function. This function is 

a combination of the image intensity functions in the 

second, third, sixth and seventh octants respectively and 

defined as follows: 

 

Case 1: p =Even, q =Eevn: 

                     ( ) 76322 , ffffyxf jik +++=                  (7.1) 

Case 2: p =Even, q =Odd: 

                     ( ) 76322 , ffffyxf jik +−−=                  (7.2) 

Case 3: p =Odd, q =Even: 

                     ( ) 76322 , ffffyxf jik −−+=                  (7.3) 

Case 4: p =Odd, q =Odd: 

                     ( ) 76322 , ffffyxf jik −+−=                  (7.4) 

 

The third kind of symmetry is represented by a function 

which is a combination of the image intensity functions for 

points that are lies on the symmetrical lines yx =  and 

yx −= as follows: 

 

Case 1: p =Even, q =Eevn: 

                     ( ) 43213 , QQQQxxf iik +++=                  (8.1) 

Case 2: p =Even, q =Odd: 

                     ( ) 43213 , QQQQxxf iik −−+=                 (8.2) 

Case 3: p =Odd, q =Even: 

                     ( ) 43213 , QQQQxxf iik +−−=                 (8.3) 

Case 4: p =Odd, q =Odd: 

                     ( ) 43213 , QQQQxxf iik −+−=                  (8.4) 

C. Exact Computation of 2D Geometric moments 

The approximation of the integral terms in equation (4) 

is responsible for the approximation error of geometric 

moments. These integrals need to be evaluated exactly to  



remove the approximation error. Equation (4) can be 

written as following:  
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The upper and lower limits of the integration in equations 

(10) and (11) have the values: 
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Substituting equations (10-12) into equation (3) yields a 

set of exact geometric moments. The computational 

complexity could be significantly reduced through the 

computation of the first octant only by applying the three 

types of symmetry as follows: 
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The moment kernel of exact 2D geometric moments is 

defined by equations (10-11). This kernel is independent 

of image. Therefore, this kernel can be pre-computed, 

stored, recalled whenever it is needed to avoid repetitive 

computation. 

IV. NUMERICAL RESULTS 

The validity proof of the proposed method is 

discussed in this section. The performance of the proposed 

method is compared with the other existing methods. 

Accuracy and efficiency are essential issues must be 

addressed and proved. A numerical experiment is 

conducted. This numerical experiment is devoted to prove 

the accuracy of the proposed method. A kind of 

complexity analysis is performed to prove the efficiency of 

the proposed method.  

In the first experiment, low order geometric moments 

are computed with the approximated ZOA and proposed 

method. The obtained results are compared with 

theoretical values of geometric moments. An artificial test 

image defined by the image intensity function ( ) 1, =yxf  

is used in this experiment. The image size is relatively 

small ( 44× ), so that, the hand calculations could be done. 

Theoretical values of geometric moments for this test 

image are calculated by the following equation: 
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The results are shown in table (2). It is obvious that, the 

results of the proposed method are identical to the 

theoretical values while the results of ZOA method are 

deviated. 

Based on the symmetry property, one octant will be 

used to compute the full set of 2D geometric moments. 

The computation process required only two points. The 

first one is fall inside the first octant and has a similar 

TABLE (1) 

THE THREE TYPES OF SYMMETRY POINTS AND THEIR COORDINATES 

 

First type of symmetry ( )
ji yxP ,1  ( )

jiN yxP ,14 +−  ( )115 , +−+− jNiN yxP  ( )18 , +− jNi yxP  

Second type of symmetry ( )
ij yxP ,2  ( )

ijN yxP ,13 +−  ( )116 , +−+− iNjN yxP  ( )17 , +−iNj yxP  

Third type of symmetry ( )
ii xxQ ,1  ( )

iiN xxQ ,12 +−  ( )113 , +−+− iNiN xxQ  ( )14 , +−iNi xxQ  



seven points in the other seven octants. The second one is 

defined according to the third type of symmetry. 

Consequently, the total number of computed points in the 

first octant is equal to ( )[ ] 212.........321 NN +−++++ . 

Therefore, the reduction in the computed points according 

to the symmetry property is defined as follows: 
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An explicit numerical example is used to explain the 

efficiency of the proposed method. In table (3), a quick 

comparison with the other existing methods is presented. 

VII. CONCLUSION 

This paper proposes a new method for efficient 

computation of accurate 2D geometric moments for gray 

level images. Three types of symmetry property are 

applied where %87 of the computational demands are 

removed. The calculated values of geometric moments are 

very accurate where the integrations are analytically 

evaluated without any kind of approximation. 

Computation of the moment invariants is straightforward. 

The conducted numerical experiments confirm the 

efficiency of the proposed method. 
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TABLE (2) 

THE NUMERICAL VALUES OF LOW ORDER 

GEOMETRIC MOMENTS 

 

Theoretical Values 

4.0000 0 1.3333 0 0.8000 

0 0 0 0 0 

1.3333 0 0.4444 0 0.2667 

0 0 0 0 0 

0.8000 0 0.2667 0 0.1600 

Proposed Exact Values 

4.0000 0 1.3333 0 0.8000 

0 0 0 0 0 

1.3333 0 0.4444 0 0.2667 

0 0 0 0 0 

0.8000 0 0.2667 0 0.1600 

0 0 0 0 0 

Approximated ZOA Values 

4.0000 0 1.2500 0 0.6406 

0 0 0 0 0 

1.2500 0 0.3906 0 0.2002 

0 0 0 0 0 

0.6406 0 0.2002 0 0.1026 

4.0000 0 1.2500 0 0.6406 

 

TABLE (3) 
REDUCTION PERCENTAGE (RP) OF  

THE PROPOSED METHOD 

 

Image size Direct 
Hosny[10

] 
Proposed RP 

64x64 4096 1024 528 87.1% 

128x128 16384 4096 2080 87.3% 

256x256 65536 16384 8256 87.4% 

512x512 262144 65536 32896 87.5% 

1024x1024 1048576 262144 131328 87.5% 


