
New SOA Model for Unlocking Transaction Resources
1Ezzat A.Korany, 2Fatma Sayed Gad EL Rab.

1 Prof of computer science.
2 Student in Institute of Gradate Study and Research, Department of information technology,

Alexandria University
Internet Technology Research, Alexandria, Al Shatby, 163 Elhoria road, Zip code: 21526, Egypt,

E-mail:f_s_g2001@yahoo.co.uk

Abstract — Successful e-business implementation begins with
the creation of an appropriate structure for running an e-
business project. This structure must be designed to ensure
successful delivery for the eventual application of the e-
business initiative, and must be capable of delivering the
desired business functionality in a timely manner and
avoiding the high failure rates. Dynamic e-business systems
contain an E-business process that is usually developed by
composite web service. Unexpected behavior from a
component Web service may not only lead to its failure, but
also may bring negative impact on all the participants of the
composition. There are some protocols that have recently
been developed for (composite) web services transactions like
WS-Transactions, OASIS Business Transaction Protocol
(BTP).Mainly these protocols use ACID properties and 2PC
to handle transactions these lead to problems in performance
and lock resources for long time .This paper surveys these
different protocols and introduces a new solution to cover
these problems but it is not implemented yet.

Index Terms — web service, composite web service, and E-
business transaction system, E-business protocols, SOA
model.

I. INTRODUCTION
 E-business technologies are composed of one or more

solution architectures. To start with Internet publishing
then appears integration between systems (internal and
external system) until dynamic e-business. Dynamic e-
business can also utilize the developing web services
standards to automatically locate and outsource business
processes in real time. Application development using
web services emphasizing the creation of software as an
interconnected set of software components [1]-[2].A Web
service is a specific kind of service that is identified by a
URI but they require special consideration as a result of
using a public like low fidelity mechanism for inter-
service interactions. Services come in two flavors: simple
(stateful services) and composite services (stateless

services). Composite services involve assembling existing
services that access and combine information and
functions from –possibly- multiple service providers
[3].Transactions exists to ensure that all parts of a
particular business operation are properly recorded. If any
single part fails, it should lead the transaction as a whole
to fail in order to maintain data consistency [4]. But in
disadvantage of web service It can`t manage transactions
to handle this problem in composite web services using
the advanced transaction model not conventional
transaction model to ensure data consistency. Because of
its long running and loosely coupled nature [5], some
protocols have recently been developed for (composite)
web services transactions. Like WS-Transactions and
OASIS Business Transaction Protocol (BTP) .They are
mainly based on the database transaction models such as
ACID properties and extended/advanced transaction
models. ACID properties are implemented using various
commit protocols such as two-phase commit (2PC)
protocol. Though ACID properties and 2PC protocols are
useful in ensuring data consistency and correctness of
transactions but they result in serious performance
problems in strict atomicity and isolation policy. ACID
properties are useful for those web services which demand
strict atomicity and consistency. However, they are
inappropriate for long running business activities.WS-
Transaction specification uses extended transaction
models for business activities. Similarly, OASIS BTP uses
an extended transaction model for long running tasks
called cohesions. Extended transaction models mainly
relax the strict atomicity and isolation policy of ACID
properties such that intermediate results of active
transactions are visible to other transactions. These models
also allow component transactions of a root transaction, to
commit unilaterally irrespective of the commitment of
their sib-ling transactions [6] - [7].

The purpose of this paper is to introduce a solution that
achieves ACID properties in composite web service for
each transaction taking into account the performance

problem that happened as a result of using 2PC in case of
the crash of at least one of the web service providers but
this new solution is not implemented yet. The rest of this
paper is organized as follow. In section 2 some recent
related work is briefly reviewed, Section 3: concept of
new solution (Methodology), Section 4: Conclusion and
future work, In section 5: acknowledgement, at last in
section 6: References.

II .RELATED OF WORK

For centric system (SC) S.Changai et, al .grouping the
requirements with respect to ACID properties and adding
a fifth set of properties which goes beyond ACIDity. 1.0
Atomicity, 1.1 Rollback, 1.2 Compensating, 2.0
Consistency, 2.1 Abort, 2.2 Adding deadlines to
transactions, 2.3 Logical expressions for specifying
constraints, 3.0 Isolation, 4.0 Durability, 5.1 Composite
transactions, 5.2 Distributed transactions, 5.3 Transaction
recovery by dynamic rebinding and dynamic re-
composition at runtime, 5.4 Secure transactions of
different types (Confidentiality, Integrity, Authentication
and Nonrepudiation), 5.5 Optimistic or pessimistic
concurrency control. Denoting the satisfaction with the
‘y’, symbol, the partial satisfaction with ‘p’, and no
support with ‘n’ as illustrated in table1.

BTP is not part of the WS-Stack, which limits its
compatibility with other Web service technologies. In
addition, BTP does not support long-lived transactions.
There is also a difference in granularity between the above
transaction standards.WS-AT contains simple two phase
commit protocols, WS-BA contains non-blocking
protocols and BTP consists of a sequence of small atomic
transactions. Dynamic rebinding is supported only by
BPEL, though only at the implementation level.

WSCDL supports most requirements, while its major
disadvantage is that the large players in the field do not
support it and that no implementation is available. WS-AT
is a very conservative business transaction model
especially with respect to blocking. WS-BA is more
appropriate for services, by renouncing to the concept of
the two-phase commit. BTP places itself in the middle
(two phase commit is followed in a relaxed way). As for
BPEL and WS-CDL they address the business process
perspective with limited transaction support.

[8].Z.Wenbing et,al .Implement new reservation
protocol that described a novel reservation based extended
transaction protocol that can be used to coordinate the
tasks of long-running business activities each task is
executed as two subtasks. The first subtask involves an
exclusive blocking reservation of the resource. The second
subtask involves the confirmation or cancellation of the
reservation. The reservation at the end of the first subtask
becomes visible to other business activities, because fewer
resources are available for them to reserve. However, this
visibility does not Compromise the isolation property,
because the reservation can be confirmed or cancelled and
the other business activities cannot make any assumptions
about resources that have not been reserved for them. For
the duration of the reservation, the supplier grants an
exclusive right to the client for the amount of goods
reserved. During the second subtask, the reservation is
confirmed only if the business activity can be completed
successfully. Reservation protocol involves two phases.

There are a number of differences between this protocol
and 2PC, in this protocol, the reservation of a resource is
executed as a traditional ACID transaction. The
application has full control over the reservation and how
long the resource is reserved, whereas, in the two-phase
commit protocol, the locking of a resource is internal to
the database system and is transparent to the application,
which has no control over how long the resource is locked
Another difference between this reservation protocol and
locking is the effect on other transactions that need to
access the resource. If a resource is reserved and another
transaction wants to access it, the transaction can acquire a
lock on the resource, and the application can be informed
immediately of the state of the resource (that is, some of
the resource has been reserved, but a sufficient quantity of
the resource remains to satisfy the reservation). Thus, the
application can take an appropriate action without delay.
However, if the resource is locked by the database system
and another transaction wants to access it, the new

Table 1 Evaluation Results

transaction must wait until the lock is released the waiting
time might be long, in which case the application cannot
take immediate action. Once again, this characteristic is
not unique to the reservation protocol. The escrow
transactional method also has this characteristic [9].

I see this solution is not suitable in case of failure of one
task, like if it fails in the payment task after it releases
recourses in the reservation task to grant another client
access to the same record. So it has implemented a
compensation process to rollback the previous reservation,
but it rolls back after another client does a transaction. So
I see this solution do treat locking problem.

Yu.Weihai et, al construct an improved 2PC (Called
Dpr Dynamic presumption) it is like 2PC but it consists of
a voting phase and a decision phase. This new feature

• A coordinator maintains in main memory a protocol
table (PTbl) that contains an entry for every transaction
that has entered 2PC. For every transaction, it maintains a
list of participants, their presumptions and votes (if voted).

• The messages WorkDone, Yes and log record Prepare
contain the presumption-bit of the participant. The
messages prepare (if the coordinator can override the
presumptions), Commit, Abort and the coordinator log
record Commit contain presumptions of all participants.

• Before the protocol starts, the coordinator has received
WorkDone messages from all participants and therefore is
aware of their preferred presumptions. The coordinator
may choose to override the preferred presumptions of the
participants and include this information in the Prepare
message. .

• The coordinator maintains a forced-availability
window for all PrC participants (if any) and a forced-
availability window for all PrA participants (if any). Care
is taken to properly close all forced-availability windows
so that the log can be correctly garbage collected.

• Each participant includes the presumption- bit in the
Prepare log record which opens an in-doubt window. Care
is taken to properly close all in-doubt windows, so that the
log can be correctly garbage collected.

• The participants only acknowledge the outcomes that
are different from the presumed ones. The duplicated
outcome messages are also acknowledged. (The messages
include the presumptions of participants, so the
participants know the presumptions even when the in-
doubt windows are closed.)

• On recovery from a system crash or on timeout of an
expected outcome message, a participant inquires the
outcome by re-sending the Yes vote message. The
message includes the presumption-bit.

• The coordinator responds to the participant with the
presumption included in the Yes vote message when no
information about the transaction is available [10].

Younas.M et, al. presents a new commit protocol called
TCP4CWS (Transaction Commit Protocol for Composite
Web Services) which aims to improve the performance in
committing a composite web service transaction.
TCP4CWS is based on the assumption that the desired
services have already been discovered using existing
techniques such as UDDI.

P (csti) is the processing time of a component web
service transaction (csti). Tmsg is the time taken to
communicate message between composite web service
coordinator (CWC) and sub coordinator (SC). Tfw is the
time taken in forced write operation. Forced-write
operations affect performance and are therefore taken into
account. In these operations, CWC and CS, first writes its
decision to a persistent storage before they can send a
message. Thus the protocol is suspended until the forced-
write operation is completed (global decision from CWC
but if commit form SC and finally receive abort message
from CWC it cancel process. Table 2 uses the above
values of P (csti), Tmsg, and Tfw to calculate the commit
and abort delays of the protocols in five different cases.
Using the above expressions (1) – (7), these delays are
calculated with the combination of minimum and
maximum values of P (csti), Tmsg, and Tfw.TCP4CWS-1
and TCP4CWS-2 respectively represent the proposed
protocol with and without alternative csti.

Table 2 Time required by 2PC, PA, and TCP4CWS to
process TCW

Figure 1 graphically represents the commit/abort delays
incurred by the protocols under consideration. The
proposed protocol

TCP4CWS-1 outperforms 2PC and PA in the case of
TCW’s commit. There is a noticeable difference between
TCP4CWS-1 and 2PC/PA when TCW is committed.
TCP4CWS mainly optimizes the commit delay due to the
unilateral commit strategy, which results in fewer
messages communicated between SCs and CWC.In the
case of TCP4CWS-2 with alternative csti, it still performs
better than 2PC and PA provided the message delay is
high (case 2). However, if the processing delay is higher,
then TCP4CWS results in poor performance due to
executing alternative transactions and cancellation of
services through compensating transactions. Though the
use of alternative transactions affects the performance,
they significantly increase the commit rate of TCW. Due
to space limitation they cannot show the results how
alternative transactions increase the commit chances of
TCW.

The use of alternative transactions is also essential in
the composite web services as there are exists various
alternative services. Further PA outperforms 2PC in the
abort cases, as it reduces the number of messages and
forced write operations. It also performs better than
TCP4CWS in all abort cases except in case 2 where the
message delays are higher. However in commit case it
does not performs well as described above. For most
applications it is necessary to improve the performance of
transactions in the commit case as it is more desirable to
commit a transaction than to abort a transaction.
TCP4CWS is built on this notion to improve the
performance in the commit case of transactions [11]. In
case of abort any SC CWC send final abort to all SC so

this resources of SC still locked until receive final
message so there are performance issue

J. Pawel et, al present a distributed commit protocol for
supporting a wide variety of applications. The protocol has
a number of features distinguishing it-self from existing
solutions. First, the protocol addresses both small scale
systems with a handful of nodes and larger systems with
hundreds of nodes. Second, it is resilient to network
partitioning and multiple node failures. Finally, the
protocol provides an exible solution in the level of
consistency through adjustable parameters and o_ers a
trade-o_ between consistency and e_ciency. New commit
protocol based on 3PC that is scalable and resistant to
dynamic network and node failures, and provides a
con_gurable level of consistency depending on speci_c
application and system deployment characteristics [12].

A.Maha et,al. present a non-blocking atomic
commitment protocol, noted ANB-CLL (Asynchronous
Non-Blocking Coordinator Logical Log), that drastically
reduces the cost of distributed transaction commitment in
terms of time delay and message complexity. Performance
analysis shows that the resulting protocol is more efficient
than all other non-blocking protocols proposed in the
literature. An important characteristic of ANB-CLL is that
it can be applied to commercial transactional systems that
are not 2PC compliant. To achieve non-blocking,
ANBCLL uses a uniform consensus protocol as a
termination protocol in an asynchronous system
augmented with an unreliable failure detector, and in
which processes may crash and recover by supporting
recovery.

Comparing ANB-CLL with the DNB-AC and MD3PC
protocols (these are the most well-known non-blocking
protocols that were proposed in the context of
asynchronous systems). Furthermore, and for the sake of
completeness, they also make a comparison with the
standard 2PC and 3PC protocols, which are undoubtedly
the reference point in the context of atomic commitment.

Fig 1 Comparison of the protocols’ delays
required to commit/abort TCW

Table 3 Latency and Message Complexity for
the different protocols

Table 3 shows the performances of the different
protocols in the absence of failure suspicions, with and
without a broadcast network. Performances are given in
terms of latency (i.e. number of steps needed to commit)
and message complexity (i.e. the number of messages
needed till a decision is reached on the participants). (n)
indicates the number of participants in the transaction
(including the coordinator), while (f) represents the
resiliency rate on which the MD3PC protocol is based. As
pointed out in the introduction, 2PC, DNB-AC and
MD3PC have the same latency (3 communication steps),
while 3PC requires 5 communication steps. From Figure
2, it is clear that ANB-CLL is faster than all the above
protocols as it only needs 2 communications steps.
Concerning message complexity, they distinguish two
cases: (1) with a broadcast network, and (2) without a
broadcast network. In case (1), and assuming 3
participants in the transaction (n = 3) and a resiliency rate
of 2 (f = 2), 2PC needs 9 messages, 3PC needs 15
messages, DNB-AC needs 21 messages, MD3PC needs 27
messages, and ANB-CLL needs 12 messages. In case (2),
2PC needs 5 messages, 3PC needs 9 messages, DNBAC
needs 7 messages, MD3PC needs 7 messages, and ANB-
CLL needs 4 messages. As a conclusion, ANB-CLL is
significantly faster than all other protocols, and in case of
a broadcast network, it even decreases communication
overhead. This high efficiency makes ANB-CLL very
well adapted to the needs of today’s advanced systems
[13].

P.Alberto et, al. propose some aspects for characterizing
the transactional behavior (key dimension can be used for
identifying transactional behavior in services based
applications) and furthermore introduced a critical review
of current approaches. For analyzing approaches providing
transactional behavior. These are key dimensions (table 4).

Duration is related to transaction lifetime. for
characterizing shared resources locking it divides to short
(millisecond for finish)and long(hours or days or week to
finish) at the most process take long duration , atomicity is
based on the principle of “all-or-nothing” for
characterizing execution and associating semantics to the
transactions in presence of exceptions there are Three
types of atomicity can be considered: Strict atomicity is(
classical definition) a transaction is treated as an
execution unit which can be completely executed or not,
Semantic atomicity introduces the concept of
compensation.

Semi atomicity enables transaction committing when a
primary set of predefined operations commits or when an
alternative set of predefined operations commits.

Isolation is related to visibility degree of results within a
transaction to other concurrent transactions. For
characterizing in which degree resources can be shared
among transactions Isolation can be either, local or global.
Local isolation enables the knowledge of partial results
within the transaction but it cannot reveal its results to
other concurrent transactions before it commits. Therefore
resources remain blocked during the transaction lifetime.
Global isolation enables the knowledge of partial results
between several concurrent transactions and the access to
common resources before committing. Global isolation is
needed when data is distributed and transactions are long
duration. In process oriented approaches, local isolation is
related to execution units while global isolation is related
to the whole transaction. Control flow specifies the
execution order of operations within transactions, it for
characterizing the execution strategies of several
concurrent transactions. Operations are related not only to
queries, but to complex business processes that involve
computations in several sites. It can be either implicit or
explicit. Implicit control flow is hard coded within the
transaction (i.e. sequential execution). It is normally
encompassed within the execution logic of transaction.
Explicit control flow is specified by the developer as a
part of the transaction definition. For example, to commit
semi atomic transaction it is necessary to specify an
alternative set of operations along with a preference order.
Explicit control can be defined imperatively or
declaratively.

Table 4 Dimensions for characterizing transactional

Regarding atomicity, providing just one type of
atomicity is not enough when multiple participants and
context are involved. Furthermore the application
characteristics determine the type of atomicity required.
Isolation is related to the degree of visibility of partial
results. Local or global isolation must be provided
depending on application needs. Control flow in current
approaches is addressed either explicitly or explicitly.
They believe that control flow must be provided implicitly
in the model with the possibility of modifying. Implicit
control flow can address well known atomic models while
explicit control flow can address specific applications
needs such as parallel recovery, selective compensation,
etc.

The first step for providing transactional behavior to
information systems was to provide transactional behavior
to data centric applications. They adopt ACID properties
for managing data by means of centralized and distributed
transactions the aim of distributed transactions is to share
data trying to minimize blocking time. This can be
achieved by using well know protocols of commitment
such as two-phase commit (2PC) and advanced
transactional models. Advanced transactional models have
been proposed as a way to tackle distribution issues. The
key principle of such models is to divide transactions in
short running sub transactions. A sub transaction can
export its results as soon as it commits but if something
goes wrong or changes, it is necessary to amend its effects
by using compensating transactions.

A compensating transaction is a “semantic undo”. In
particular they are interested in advanced transactional
models because they introduces the notion of how
executing operations within transactions as a part of the
definition itself of transactions. Three well known
proposals of them are saga, flexible transactions, and
contracts. Transactional behavior for current applications
is addressed by process oriented approaches (i.e.
transactional workflows). In such approaches, transactions
are used to ensure consistency among computations using
process as execution units. They deeply analyze the
following approaches that provide transactional behavior
to business processes: compensation and atomicity spheres
approach that introduces the concept of control spheres ,
OASIS-BTP business transactions protocol that address
the problem of coordinating business processes with
transactional properties , Web services transactions that
addresses transactional behavior to Web services , and two
models addressing atomicity for coordination of Web
services based on tentative-hold protocol and patterns .

Table 5 summarizes the presented approaches according
to four dimensions that mentioned before. Note that most
of the approaches do not address all values of dimensions.
While data centric approaches are mainly concern of short
duration transactions with local isolation, process oriented
approaches are concern of long duration transactions with
global isolation. Beside most of the approaches address
only one kind of atomicity assuming either implicit or
explicit control flow. After analyzing Table 4 they
conclude that transactional behavior has been tackled
using ad-hoc strategies. They think that is possible to
address all values of dimensions in existing service based
applications. Consequently, they propose an approach that
separates the specification of application logic and the
specification of transactional behavior as follows:

• Application logic must be captured by using a
successful coordination approach (i.e. workflow
technology).

• Transactional behavior must be defined by using
atomicity contracts and associating a well defined
behavior to participants of coordination [14].

R. Hossein et, al introduce a heuristic distance measure
which significantly reduces search space of hybrid (i.e.
forward-backward) search algorithm and results in near-
optimal solutions for composite web service, services are
more susceptible to failures This is due to its dependency
on other services which are external modules to the
composite service MAX_MIN heuristic distance measure
for estimating the distance between two sets of literals (i.e.

Table 5 Approaches with respect to dimensions

service’s input/output). Each literal represents one of the
members of service’s Input/output set.

The distance measure is used for reducing the search
space of exhaustive search algorithm. Heuristic distance
measure reduces search space significantly and results in
so near-optimal solutions. They proposed a mechanism to
gather some knowledge in well defined data structures in
offline. Then it uses those extracted knowledge for
heuristic calculation. Heuristic calculation is kind of
general MAX_MIN algorithm and is used when distance
between two sets of literals is needed. At runtime, they ask
user non-functional properties (i.e. Cost, Time and
Reliability) precedent, then augment the MAX_MIN
algorithm with user’s preferences. Experiment results
show that, although proposed method is not optimal, but it
is near-optimal with significant reduced search space [15].

Z. Wenbing report mechanisms for A distributed
transaction that might not commit atomically at correct
participants if there are more faults and implementations
in the context of a Web services atomic transaction
framework that significantly increase the probability of
atomic commitment of distributed transactions even when
the majority of coordinator replicas become faulty. The
main novelty of our design is the minimized runtime
overhead and the increased failure resiliency of distributed
commit under Byzantine faults. The core mechanisms
include a piggybacking mechanism, which limits the way
a faulty coordinator replica can do to cause confusion
among correct participants, and a voting mechanism,
which enables fast agreement on the transaction outcome
under fault-free situation, and ensures that the agreement
is based on the messages from correct replicas with high
probability even if all but one coordinator replica becomes
faulty. Their performance study on an implemented
prototype system shows only 10% end-to-end runtime
overhead under both fault-free and faulty scenarios. This
proves the practicality of their mechanisms for use in real-
world Web-based transactional systems.

Fig 2 The measurements of the end-to-end latency
(a) and the two-phase commit latency (b) under
different fault –free scenarios.

Fig 3 the measurements of the end-to-end latency
(a) and the two-phase commit latency (b) under
different number.

[16]. A.Mohammad et, al .proposed a novel no blocking
scheduling mechanism that is used prior to the actual
service invocations. Its aim is to reach an agreement
between the client and all participating providers on what
transaction processing times have to be expected,
accepted, and guaranteed. This enables service consumers
to find a set of best suited providers fitting their deadlines.
Service providers on the other hand can benefit from the
proposed mechanism due to the now possible intelligent
scheduling of service invocations for best throughput.

The proposed solution enhances conventional
scheduling algorithms for concurrency control to support
the time characteristics of the transactions in Web service
environment. By applying the proposed scheduling
mechanism unnecessary blocking of transaction
commitment during the execution of a 2PC protocol is
avoided, thus saving time and costs of later abort or
missed deadlines. The proposed approach is beneficial for
both the service consumer and service provider. The
experimental results showed a significant improvement in
terms of number of successfully completed transactions
within acceptable time frames as well as in terms of
resources utilization [17].

L. Mikel et, al. present a new algorithm implementing
3S. there algorithm guarantees that eventually all the
correct processes agree on a common correct process. This
property trivially allows us to provide the accuracy and

Completeness`s properties required by 3S. They show
that there algorithm is better than any other proposed
implementation of 3S in terms of the number of messages
and the total amount of information periodically sent. In
particular, previous algorithms require to periodically
exchange at least a quadratic amount of information, while
ours only requires O (n log n) (where n is the number of
processes).However, they also propose a new measure to
evaluate the efficiency of this kind of algorithms, the
eventual monitoring degree, which does not rely on a
periodic behavior and expresses better the degree of
processing required by the algorithms. They show that the
runs of their algorithm have optimal eventual monitoring
degree [18].

III. METHODOLOGY

This methodology presents the design of a new
architecture model for web service systems and how a new
model handles transactions for consumers that use
composite web service to decrease lock time of provider
resources in case of crash. Previous model needs client
build coordinator to handle transactions between web
services in composite web service or use any of standards
like BTP as mentioned before. There are backwards for
these standard like using 2PC to handle atomic
transaction, in case of a consumer crash or coordinator
crash, it is in a separated server. These lead to the lock of
provider resources. So this new model doesn`t need
neither an external coordinator nor 2PC. At the same time,
composite web service is atomic transaction.

Fig 4 Distributed of transaction`s length

Fig 5 Resources utilization

Fig 6 Overall throughputs

Dear reader you will see

• General view of new model of WS (System design).

• Detailed View of relations between NewUDDI
(NUDDI) and Consumer.

• Detailed View of relations between NUDDI and
Providers.

• Detailed View about NUDDI How NUDDI handles
transactions In case of 3 cases.

• Normal case (No failure)
• Failure of Consumer
• Failure of provider

3.1. General view of new model of WS (System
design):-

Figure 7 illustrates new model of web service
architecture. Provider can publish service as before but
there are differences in contact consumer with provider.

3.2. Detail View of relation between NewUDDI
(NUDDI) and Consumer.

• Consumer query WSDL and check if it available or
not.

• Consumer send SOAP request to UDDI, this request
includes Composite WS (consumer want some of WSs).

3.3. Detail View of relation between NUDDI
and Providers.

• UDDI send request per provider (Figure 9).

•Each provider response to NewUDDI after it completes

•Implementation (Normal case without the crash of any
provider).

• NUDDI forwards these responses to consumer
(normal case without crash consumer).

3.4. Detail View about NUDDI How NUDDI
handle transaction In case of 3 cases.

As mentioned before WS new model was designed to
treat backwards in 2PC in case of failure that lead to lock
resources of providers .previous model has 3 failure
scenarios:-

• UFailure of consumerU:-this scenario illustrates how
consumer can`t tells coordinator to commit.

So if this crash was discovered early (immediately
crash) provider would not need to lock its resources.
These times starting from receiving a request to receiving
a commit or abort from coordinator. So, in the new model,
there is a session opened between coordinator and
consumer, if it expires for any reason, the coordinator
immediately sends abort to all providers to cancel the
process and release its resources.

• UFailure of coordinatorU:-some servers that have
coordinators may crash for any reason like network...etc.

Fig 8 Consumer send SOAP request to NUDDI

Fig 7 New model of web service architecture

Fig 9 NUDDI forward request to provider

So, providers lock resources utile receiving a commit or
abort for data consistency. So in the new model, the
coordinator is built in the UDDI server.

• Failure of provider

: - As we know, A composite
webservice is a service. Some web services, after sending
a request, sometimes one of these providers’ crashes. So,
the atomicity and consistency transaction coordinator has
to send abort to all other providers. But this abort message
will be sent after all providers finish execution. So, this is
a huge time. Specifically that provider that crashed has
greater time to finish its execution than others. The new
model tries to treat this problem by doing 3 things: First

get time per WS function from WSDL, second NUDDI
use DISO frame work [20] to calculate latency in network
between provider and NUDDI server so each function has
2 times WSft (web service function time) +NLt (network
latency time) So provider has to respond after
WSt=WSft+NLt. Third NUDDI calculates Max time for
all WSs like WSt1<WSt2<WSt3 so here max is WS3
provider has to be publish time per web service function in
WSDL. This time will be used by the new coordinator
built in NUDDI to calculate time per exaction

Fig 10 Detail NUDDI

IV .CONCLUSION AND FUTURE WORK

Ensuring consistency and atomicity of composite web
service in any E-business system is essential. It is not
enough to grantee good performance of this system.
Time is an important item that has to be taken into
account in e-business. The new model of WS system try
to take time into account and handles transactions in a
new approach. In this paper UDDI becomes the handler
of the transaction to grantee the reduction of the
likelihood of coordinator crash, NUDDI opens session
between UDDI server and consumer to make sensor to
consumer. If it crashes at any time during execution of
WS, UDDI aborts all transactions to release recourses of
the provider. Also calculates time that each WS would
be implemented + time to transport data over the
network. If any WS Overtakes this time, UDDI starts
calculating time that it will consume to re call and get
new response. If it is greater than max time of WS in
this composite, WS UDDI sends abort to all other
transactions to release resources. In future work the new
solution will be implemented and compared with old
model of SOA using BTP and web service transaction
in locked time of resources in case of failures of at least
one of the provider or consumer .

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and
support of the ICCTA Steering Committee.

REFERENCES
[1] K.Ravi, R.Marcia,"E-business 2.0 Roadmap for Success”

Copyright 2001 addison-Weseley
[2] W.Dougal,"E-business Implementation A guide to web

services, EAI, BPI, e-commerce, content management,
portals, and supporting technologies" ,First published
2002 Butterworth-Heinemann ,An imprint of Elsevier
Science Linacre House, Jordan Hill, Oxford OX2 8DP

[3] C.Lawrence, M.Zakaria, M.David, B.Boualem,
"Extending Web Services Technologies The Use of
Multi-Agent Approaches” Library of Congress
Cataloging-in-Publication Data 2004 Springer Science
Business Media, Inc.

[4] Y.Ling, G.Lin, "Research of Business Transaction Process
in SOA Environment", International Conference on
Computer Science and Software Engineering 2008, p.p
1256 – 1259, December 2008.

[5] E.Joyce, M.Maude, R.Guillermo, R.Marta "QoS-driven
Selection ofWeb Services for Transactional
Composition", IEEE International Conference on Web
Services 2008, pp 653 – 660, November 2008.

[6] Cabrera,F.,Copeland,G.,Cox,B.,Freund,T.,Klein,J.,Storey,
T., and Thatte, S. ,

http://www-106.ibm.com/developerworks/library/wstranspec/
 Web Services Transaction (WS-Transaction) (2002)
[7] S. Tai, R. Khalaf, T.A. Mikalsen “Composition of

Coordinated Web Services” 5th ACM/IFIP/USENIX
international conference on Middleware, Vol. 78, pp 294
– 310, October 2004.

[8] S.Changai,A. Marco"Requirements and Evaluation of
Protocols and Tools for Transaction Management in
Service Centric Systems”, 31st Annual International
Computer Software and Applications
Conference(COMPSAC 2007),Vol. 2,pp 461 – 466,
August 2007.

[9] Z.Wenbing, E.Louise, Moser, P.M. Melliar-Smith " A
Reservation-Based Extended Transaction Protocol"

 IEEE Transactions on parallel and distributed systems,
VOL. 19, NO. 2,pp 188 – 203, Feb 2008 .

[10] Y.Weihai, W.Yan, Pu, C.," A Dynamic Two-Phase
Commit Protocol for Self-Adapting Services", IEEE
International Conference on Services Computing,
2004. (SCC 2004),pp 7 – 15, Sept. 2004.

[11] Y. Muhammad,M. Kuo,C.Chi,L. Yinsheng,"An Efficient
Transaction Commit Protocol for Composite Web
Services", 20th International Conference on Advanced
Information Networking and Applications (AINA’06)
,Vol. 1,pp 591 – 596, April 2006.

[12] J.Pawel, X.Li,"Adapting Commit Protocols for Large-
Scale and Dynamic Distributed Applications" OTM 2008
Confederated International Conferences, CoopIS, DOA,
GADA, IS, and ODBASE 2008. Part I on On the Move
to Meaningful Internet Systems,Vol. 5331,pp 465 -
474 ,2008.

[13] A.Maha, P.Philippe,"A Low-Cost Non-Blocking Atomic
Commitment Protocol for Asynchronous Systems" 12th
International Conference on Parallel and Distributed
Computing and Systems (PDCS), USA, November1999.

[14] P. Alberto,V.Genoveva ,Z. Jose-Luis ,C. Christine,
G.Luciano "A survey for analyzing transactional
behavior in service based applications" Seventh Mexican
International Conference on Computer Science (ENC'06)
,pp 116 – 126,2006

[15] R.Hossein, A.Hassan," Composite Web Service Failure
Recovery Considering User Non-Functional Preferences"

 4th International Conference on Next Generation Web
Services Practices 2008 IEEE ,pp 39 – 45, Oct. 2008.

[16] Z.Wenbing, "Failure Resilient Distributed Commit for
Web Services Atomic Transactions",This work was
supported by a Faculty Startup Award and a
Faculty,Research Development Award at Cleveland State
UniversityPublication.eprint arXiv:cs/0612083 12/2006

[17] A.Mohammad, B,Wolf-Tilo, D.Peter Dolog, Nejd,
"Nonblocking Scheduling for Web Service Transactions"

 Fifth European Conference on Web Services 2007 IEEE
,pp 213 – 222, December 2007

[18] L.Mikel,F.Antonio,andez,A.Sergio,"Optimal
Implementation of the Weakest Failure Detector for
Solving Consensus " , 19th IEEE Symposium on Reliable
Distributed Systems, 2000. SRDS-2000. pp.52 – 59,
References Cited: 11, August 2002.

 [19] http://disco.informatik.uni-kl.de/

http://disco.informatik.uni-kl.de/�

	New SOA Model for Unlocking Transaction Resources
	Index Terms — web service, composite web service, and E-business transaction system, E-business protocols, SOA model.
	I. Introduction
	II .Related of work
	III. Methodology
	IV .Conclusion and future work
	Acknowledgement
	References

