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Introduction

* The frequency-response techniques and the root-locus
technique are classical design techniques (based on the
transfer function).

* They are very effective, but are largely trial and error.

 Even when an acceptable design is completed, the

question remains as to whether a "better” design could
be found.



Introduction

The pole-assignment design technique is termed a modern
technique (based on the state variable model of the plant).

In this procedure we assumed that we know the exact locations
required for the closed-loop transfer-function poles, and we can
realize these locations, at least in the linear model.

For the physical system, the regions in which the pole locations
can be placed are limited.

In the pole-assignment technique, we assume that we know the
pole locations that yield the "best" control system.



Introduction

We need a different technique that yields the "best" control
system.

This technique is an optimal design technique, and assumes that
we can write a mathematical function which is called the cost
function.

The optimal design procedure minimizes this cost function:
hence the term optimal.

The final two topics presented in this course are based on the
same mathematical foundation as for linear quadratic optimal
control.



Introduction

The first topic is a technique for system
identification.

The system transfer function is calculated from
input-output data for the physical system.

This technique is called least-squares system
identification, and yields the transfer function that
"best" fits the available data.

The second topic is Kalman filtering, is an optimal
technique for state estimation.




Least Squares Method



Least Squares Curve Fitting

» Many different techniques are available for finding a
linear model of a physical system by using input-output
measurements.

15

-10 0 10 20 an 40 50 G0

= We will consider least-squares system identification.



= Suppose that we suspect a linear relationship between
the variables xand y of the form

y=kx ... (1)
Kk : constant

* We measure data pairs (X, Y;) and wish to calculate the
"best” estimate of kfrom the data.

» Using the data pairs, (1) can be expressed as,

Y, =kx + ¢
Y,=kx,+ e,
Y,=kx;+ e

€. errors in measuring data



If no errors are present, we can determine k exactly from
anyone data pair.

We wish to solve for k by a method that minimizes the errors.

We can write (1) in vector form as

y=kx+e
For three data pairs
" . o
Y1 X1 €
Y=V, X=|xf e=16
Y3 | X3 | €3




* For N data pairs

N
efe=e+el+--+eb=D e
k=1

* The sum of the squared errors is given by

e'e=[y - kx|Ty - kx) =y'y - 2kx"y + k*xx
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The resulting estimate of kis called the /east-squares
estimate.

We obtain the least-squares estimate of A from

T
_ﬂ(;ke) = -2x"y+ 2kx"x =0

Solving this equation for k yields

A B xTy
(= () Ty = 5

e

where k is the least-squares estimate of



Example

Suppose that y = k& x and we wish to determine
the least squares estimate of k& from the three
data pairs

x y
1.0 125
21 20
295 29

(1L0)(1.25) + (2.1)(2.0) + (2.95)(2.9)  14.005

(LOLO) + Q12D  RI)2%) WS

k

1
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LEAST-SQUARES SYSTEM
IDENTIFICATION



= We assume a system transfer-function model of the

form
Y(z) _ G(z2) - byz" '+ b,z" %+ .-+ b,
U(z) "—aqz" " - g,

» The difference equation of the system is:
y(k) =aylk - 1)+ ayy(k =2) + --- + ayy(k — n)
+byu(k = 1) + byu(k —2) + -+ + bu(k - n)

= We wish to determine the coefficient vector from
measurements of the input-output sequences uk)

and y(k).

0=(ﬂ1 (' qQ, b; bz“'_’b,,)T
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» To illustrate the procedure, we first consider the first-order case, with

Y(z) _ _ b
Uz) Glz) = zZ — a
Hence
yk)y=ary(tk — 1) + bjutk — 1)
and thus

y(1) = a1y(0) + b1u(0) + e(1)
y(2) = ary(1) + biu(1) + e(2)
y(Q) = ay(2) + biu(2) + e(3)

= e(k): error due to measurement inaccuracies.

* This equation can be expressed in vector-matrix form as
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y2)|=|y(1) w3+ ()

[y(l)' [y(c') u(0) |r ] e(1)
= +
y3)| yQ@) u@)| e(3).

= which may be expressed as the

N3)=F(3)6 +e(5)




» For asetof (N + 1) measurement pairs
w(0), y ()}, {u(1), y(D)}, - . ., {u(N), y(N)}

= Define the vector f(k) by
Pk) =Dk -1) yk=2)-yk=n) ulk~1)-ulk - n)
then

y(n) = £1(n)8 + e(n)
yn +1)=f(n +1)0 + e(n + 1)

y(N) = f/(N)0 + e(N)



y(N) = f'(N)8 + e(N)

= where
oy  f(n)
W =PI = | P D)
) W)

= we can express y(N)as:

y(N) = F(N)® + e(N)




* Next the cost function J@ ) is defined as the
sum of the squared errors:

N

J(0) = 2 &*(k) = e"(N)e(N)

k=n

* Then
J(0)=[y— FO]ly - F8] = y'y - 0"F'y - y'Fo + 6"F'F0
=y'y — 20"F'y + 0"F"Fo

* Thus the value of 8 that minimizes J(6) satisfies the
equation

%%Q = —2FTy + 2FF0 = 0 F'FO = FTy
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F'FO = F'y
* Then The least-squares estimate of 6 Is then

0.5 = [FT(N)F(N)] ' FT(N)y(N)

= For N=4

(1) y(0) u(l) w(O)]]yQ)
Fi(4y@ ={y@) y1O) u@) u()]|yB)
y3) y@) u@) u@)] |y




Example



Suppose that a first-order system yields the
following data.

ko u(k)  y(k)

0 1.0 0
1 075 03
2 050 0225

= Assumed transfer function is

b, a
G(z) = ——, s=[‘]
= Since N=2 cTa o
F(2)=F‘T“)-= y0) u©)] [0 1
0] [y w03 015



= Then

F'F =

= and

0 0.3

=

0 1 | [0.09 0225
107503 0.75] |0.225 1.5625
rer-1 _ | 17.361 —2.5
[FF] [—2*5 1 ]

=

* Then the least-squares estimate of 6 Is

0.5 = [F'F] 'FTy =

1

1

2.5 3.333

0

=

17.361 2.5
-25 1
03 | [o
0225|703

1

0

1

B

0.3
0.75

0.3

0225



= Then the transfer function Is:
G(z) = 2

= with the difference equation

y(k) = 0.3u(k - 1)



End Of Lecture



