COLLEGE OF ENGINEERING & TECHNOLOGY Department: Electronics and Communications Engineering

Lecturer: Associate Prof. Dr. Hussein Hamed Mahmoud Ghouz

Course: Electromagnetic-I

Course Code: EC341

Time : 60 Min.

Date : Sat. Dec., 13, 2014

Total Marks : 20

<u>12TH Exam Fall 2014/2015</u> Answer the Following Questions

Q.1: A cross section view of two concentric conducting spheres having radii " $\mathbf{r_1}$ " and " $\mathbf{r_2}$ " is shown in **Fig.1**. The inner conductor is kept at constant potential V=V₀=10.0 volt while the outer conductor is grounded. The space between the inner and outer conducting spheres is filled with lossless dielectric material. Assume: $\mathbf{r_2}$ = 10.0 $\mathbf{r_1}$ ($\mathbf{r_1}$ =1.5 mm), $\varepsilon_{\mathbf{r}}$ =4.7. Solve the Laplace equation to find the following: (4-mark each)

1. The electric field intensity, polarization and induced charge densities in each region

- **2**. The electrostatic potential and the capacitance in each region
- <u>Q.2</u>: A small charged dielectric sphere having a diameter D=5.0 mm and a volume charge density ρ_v =400.0 nc/m³ is located at the point P₁ (1.25 m, 0.75 m) in the region between two infinite conducting ground planes form a right angle as shown in Fig.2. Using the image method to find the following: (4-mark each)

1. The induced surface charge density on the ground planes: ρ_{x-y} and ρ_{y-z}

2. The force between the charged sphere and the ground planes: F_{QG}

Q.3: Given two infinite and isolated conducting planes as shown in **Fig.3**. The first conductor plane is inclined by an angle of 15° with respect to the x-y plane and it has a zero potential. The second conductor plane has an angle of 50° with respect the first plane, and it has a constant potential V=V_o=5.0 volt. Using the Laplace equation to find the following: (2-mark each)

1. The electric field $\mathbf{E}_{\mathbf{P}}$ at any point between the conducting planes

2. The induced surface charge densities on the ground planes

This question is optional with additional 4-Mark added to the 7th Grade (1-Marh each):

<u>O.opt</u>: A <u>Charged Disk</u> having inner radius $b_1=20$ cm, outer radius $b_2=50$ cm, and charge density $\rho_s=10$ nc/m² is located in x-y plane as shown in **Fig.4**. Find the following:

1. The electric potential at the point P (0, 0, h=1.0 m), then, plot V_p

2. The electric field at the point P (0, 0, h), then, plot E_p

3. The electric field at the point **P** if $b_1 \rightarrow 0$ and $b_2 \rightarrow \infty$ using <u>Gauss' Law</u>

4. The force acting on a point charge Q=-15.0 mc located at the point P (0, 0, 1.5h)

GoodLuck

P.T.O

