Chapter 1 Introduction to Java

Why Java?

The answer is that Java enables users to develop and
deploy applications on the Internet for servers, desktop
computers, and small hand-held devices. The future of
computing is being profoundly influenced by the Internet,
and Java promises to remain a big part of that future. Java
IS the Internet programming language.

+Java IS a general purpose programming language.
=Java IS the Internet programming language.

Java, Web, and Beyond

Java can be used to develop Web applications.

Java Applets
Java Web Applications

Java can also be used to develop applications
for hand-held devices such as cell phones

Examples of Java’s Versatility (Applets)

_lolx

File Edit View History Bookmarks Tools Help

|http:,Ffmwur.cs.armstrcrng.edu,fﬁangfintrcrﬂefl:rcrnkﬂ'rcTacTDe.html T

> >
(D

X's turn
bt F|nc|:| + Next ‘& Previous s Highlight al ™ Match

Done i

Companion

Website Characteristics of Java

e Java ls Simple

e Java Is Object-Oriented
e Java Is Distributed

e Java Is Interpreted

e Java Is Robust

* Java ls Secure

e Java Is Architecture-Neutral
e Java Is Portable

e Java's Performance

* Java ls Multithreaded

* Java ls Dynamic

http://www.cs.armstrong.edu/liang/intro8e/JavaCharacteristics.pdf

Companion

Website Characteristics of Java

* Java ls Object-Oriented

e Java Is Distributed

e Javals Interpreted

* Java ls Robust

* Javals Secure

e Java s Architecture-Neutral
* Java Is Portable

e Java's Performance

* Java ls Multithreaded

* Java ls Dynamic

Companion

Website Characteristics of Java

Java Is Simple

e Java Is Distributed

e Javals Interpreted

* Java ls Robust

* Javals Secure

e Java s Architecture-Neutral
* Java Is Portable

e Java's Performance

* Java ls Multithreaded

* Java ls Dynamic

Companion

Website Characteristics of Java

Java Is Simple

Java Is Object-Oriented

e Javals Interpreted

* Java ls Robust

* Javals Secure

e Java s Architecture-Neutral
* Java Is Portable

e Java's Performance

* Java ls Multithreaded

* Java ls Dynamic

Companion

Website Characteristics of Java

e Javals Simple
* Java ls Object-Oriented
* Java Is Distributed

* Java ls Robust

* Javals Secure

e Java Is Architecture-Neutral
* Java Is Portable

e Java's Performance

* Java ls Multithreaded

* Java ls Dynamic

Companion

Website Characteristics of Java

e Javals Simple

* Java ls Object-Oriented
* Java Is Distributed

e Javals Interpreted

* Javals Secure

e Java Is Architecture-Neutral
* Java Is Portable

e Java's Performance

* Java ls Multithreaded

* Java ls Dynamic

Companion

Website Characteristics of Java

e Javals Simple

* Java ls Object-Oriented
e Java Is Distributed

e Javals Interpreted

* Java ls Robust

e Java Is Architecture-Neutral
* Java Is Portable

e Java's Performance

* Java ls Multithreaded

* Java ls Dynamic

Companion

Website Characteristics of Java

e Javals Simple

* Java ls Object-Oriented
e Java Is Distributed

e Javals Interpreted

* Java ls Robust

* Javals Secure

* Java Is Portable

e Java's Performance

* Java ls Multithreaded
* Java ls Dynamic

Companion

Website Characteristics of Java

e Javals Simple

* Java ls Object-Oriented

e Java Is Distributed

e Javals Interpreted

* Java ls Robust

* Javals Secure

e Java Is Architecture-Neutral

e Java's Performance
e Java ls Multithreaded
* Java ls Dynamic

Companion

Website Characteristics of Java

e Javals Simple

* Java ls Object-Oriented

e Java Is Distributed

e Javals Interpreted

* Java ls Robust

* Javals Secure

e Java Is Architecture-Neutral
* Java Is Portable

e Java ls Multithreaded
* Javals Dynamic

Companion

Website Characteristics of Java

e Javals Simple

* Java ls Object-Oriented

e Java Is Distributed

e Javals Interpreted

* Java ls Robust

* Javals Secure

e Java Is Architecture-Neutral
* Java Is Portable

e Java's Performance

* Java ls Dynamic

Companion

Website Characteristics of Java

e Javals Simple

* Java ls Object-Oriented

e Java Is Distributed

e Javals Interpreted

* Java ls Robust

* Javals Secure

e Java Is Architecture-Neutral
* Java Is Portable

e Java's Performance

* Java Is Multithreaded

JDK Versions

1 JDK Alpha and Beta (1995)

2 JDK 1.0 (January 23, 1996)
3JDK 1.1 (February 19, 1997)

4 J2SE 1.2 (December 8, 1998)
5J2SE 1.3 (May 8, 2000)

6 J2SE 1.4 (February 6, 2002)

7 J2SE 5.0 (September 30, 2004)
8 Java SE 6 (December 11, 2006)
9 Java SE 7 (July 28, 2011)

10 Java SE 8 (March 18, 2014)

JDK Editions

» Java Standard Edition (J2SE)

— J2SE can be used to develop client-side standalone
applications or applets.

» Java Enterprise Edition (J2EE)

— J2EE can be used to develop server-side applications such as
Java servlets and Java ServerPages.

» Java Micro Edition (J2ME).

— J2ME can be used to develop applications for mobile devices
such as cell phones.

This book uses J2SE to introduce Java programming.

Popular Java IDEs

* NetBeans Open Source by Sun

* Eclipse Open Source by IBM

A Simple Java Program

Listing 1.1

//This program prints Welcome to Java!
public class Welcome {
public static void main (String[] args) {

System.out.println ("Welcome to Javal!");

e Creating, Compiling, and Running
ETTE oz el Programs

bublic class welcome { |=]
r Create/Modify Source Code |«
4

System. out. printIn"welcome to Jawva!'");

public static void main(string[] args) {
Ll 7

Source code (developed by the programmer)

public class Welcome {

public static void main(String[] args) {
System.out.printin("Welcome to Java!"); Source Code
} -

Saved on the disk

}

) Compile Source Code
Byte code (generated by the compiler for JVM

° i.e., javac Welcome.java

to read and interpret, not for you to understand)))

Method Welcome() If compilation errors
0 aload 0 stored on the disk

. . . Bytecode
Method void main(java.lang.String[])

0 getstatic #2 ...

3 Idc #3 <String "Welcome to
Javal">

5 invokevirtual #4 ...

[@ BV N PITVIZN

Run Byteode
i.e., java Welcome

o

If runtime errors or incorrect result 21

Compiling Java Source Code

You can port a source program to any machine with appropriate
compilers. The source program must be recompiled, however, because
the object program can only run on a specific machine. Nowadays
computers are networked to work together. Java was designed to run
object programs on any platform. With Java, you write the program
once, and compile the source program into a special type of object
code, known as bytecode. The bytecode can then run on any
computer with a Java Virtual Machine, as shown below. Java Virtual
Machine is a software that interprets Java bytecode.

Java Bytecode

—

Java Virtual
Machine

Computer

Trace a Program Execution

//This program prints Welcgfe to Java!
public class Welcome {

public static void main (String[] args) {
System.out.println ("Welcome to Javal!");

Trace a Program Execution

//This program prints Welcog#”™ to Java!
public class Welcome {

public static void me£n (String[] args) {
System.out.println ("Welcome to Javal!");

Trace a Program Execution

//This program prints Welcome to Java!
public class Welcome {
public static void main (String[] args) {
System.out.println ("Welcome to Javal!");

<+ Command Pro

C:\book>java Wlelcome
Welcome to Java!
C:\book>

4

Companion
Website

Compiling and Running Java

from the Command Window

Set path to JDK bin directory
— set path=c:\Program Files\java\jdk1.6.0\bin
Set classpath to include the current

directory
— set classpath=.

Compile
— javac Welcome.java

Run
— java Welcome

_iol x|
C:“book>javac Uelcome. java ;I
C:sbookX*dir Welcome.»
Uolume in drive C has no label.
Volume Serial Mumber is 9CB6—16F1

Directory of C:\book

7-31-2803 B2:32p
6/28-2003 A7:3%p

424 Yelcome.class
117 UYelcome.java

2 Fileds> 543 huytes
A Dird=z> 21.788.853.768 hytes free
C:sbhook>java Welcome
Melcome to Javat
C:sbookX>_ =
i | v

Anatomy of a Java Program

Comments
Reserved words
Modifiers
Statements
Blocks

Classes
Methods
The main method

Comments
Three types of comments in Java.

Line comment: A line comment is preceded by two
slashes (//) in a line.

Paragraph comment: A paragraph comment is enclosed
between /* and */ in one or multiple lines.

Jjavadoc comment. javadoc comments begin with /**
and end with */. They are used for documenting
classes, data, and methods. They can be extracted into
an HTML file using JDK's Javadoc command.

Reserved Words

Reserved words or keywords are words that have a
specific meaning to the compiler and cannot be used for
other purposes in the program. For example, when the
compiler sees the word class, it understands that the
word after class is the name for the class. Other reserved
words in Listing 1.1 are public, static, and void. Their use
will be introduced later in the book.

Modifiers

Java uses certain reserved words called modifiers that
specify the properties of the data, methods, and
classes and how they can be used. Examples of
modifiers are public and static. Other modifiers are
private, final, abstract, and protected. A public datum,
method, or class can be accessed by other programs.
A private datum or method cannot be accessed by

other programs. Modifiers are discussed in Chapter 6,
“Objects and Classes.”

Statements

A statement represents an action or a sequence of
actions. The statement System.out.printIn("Welcome to
Javal!") in the program in Listing 1.1 is a statement to

display the greeting "Welcome to Java!" Every statement
in Java ends with a semicolon (;).

Blocks

A palir of braces in a program forms a block that groups
components of a program.

public class Test { <

|
public static void main(String[] args) { 6 Class block
System.out.println ("Welcome to Java!"); Method block
) & |

} <

Classes

The class is the essential Java construct. A class is a
template or blueprint for objects. To program in Java,
you must understand classes and be able to write and
use them. The mystery of the class will continue to be
unveiled throughout this book. For now, though,

understand that a program is defined by using one or
more classes.

Methods

What is System.out.println? It is a method: a collection
of statements that performs a sequence of operations to
display a message on the console. It can be used even
without fully understanding the details of how it works.
It is used by invoking a statement with a string
argument. The string argument is enclosed within
parentheses. In this case, the argument is "Welcome to
Javal" You can call the same println method with a
different argument to print a different message.

main Method

The main method provides the control of program flow.
The Java interpreter executes the application by invoking
the main method.

The main method looks like this:

public static void main(String[] args) {
// Statements;

J

Displaying Text in a Message Dialog
Box

you can use the showMessageDialog method in the
JOptionPane class. JOptionPane is one of the many
predefined classes in the Java system, which can be
reused rather than “reinventing the wheel.”

The showMessageDialog Method

JOptionPane.showMessageDialog(null,
"Welcame to Javal”,

Welcome to Java!

@
il

37

Two Ways to Invoke the Method

There are several ways to use the showMessageDialog
method. For the time being, all you need to know are
two ways to invoke it.

One is to use a statement as shown in the example:

where x is a string for the text to be displayed, and y is
a string for the title of the message dialog box.

The other is to use a statement like this:

where x is a string for the text to be displayed.

