Programming Languages

Objectives:

To describe the evolution of programming languages
from machine language to high -level languages .

To understand how a program in a high -level
language is translated into machine language using
an interpreter or a compiler .

To distinguish between four computer language
paradigms .

To understand the procedural paradigm and the
Interaction between a program unit and data items
aparadigm .

1z

Objectives (continued):

To understand the object -oriented paradigm and
the interaction between a program unit and objects
In this paradigm .

To define functional paradigm and understand its
applications

To define a declaration paradigm and understand its
applications

To define common concepts In procedural and
)JET=Quiented languages .

13

9.1 EVOLUTION

To write a program for a computer, we must use a

computer language. A computer language Is a set of
predefined words that are combined into a program
according to predefined rules (syntax). Over the years,
computer languages have evolved from machine

language (0 assembly languages to high - level
languages .

14

Programming Languages

y Programmingg language>: A set of rules, words,
symbols, and codes used to write computer
programs

BTo write a program, you need appropriate software for the
programming language you will be using
y Categaniéss of pragraamming g languagess
BLow-level languagess: Difficult to code In; machine
dependent

f Machine language : 1s and Os

{ Assembly language : Includes some names and other symbols
to replace some of the 1s and Os in machine language

Programming Languages

Memory address for SUM MACHINE LANGUAGE
Memory address for register O~ | Machine language instructions are typically in binary form, and the
) [] 1 memory address locations, as well as the instructions themselves,
ADD operation cnde—LRE2E3F 90T B0AT00I00R need to be specified. The highlighted machine language instructions
shown to the left correspond to the highlighted assembly language
DEC operation code—|0°5337II°°1004| statements below.
Memory address for CNTR™ (000000,
END operation code
Operation codes
Labels | Operands Comments
|
ASSEMBLY
LANGUAGE .TITLE SUM TWO ERS
Assembly language - ENABL AMA : Enable absolute memory addressing
instructions typically .GLOBL RNUM, P 7 Subroutines to be used
Luse mnemonic -MCALIL .TTYIN, |-FTYOUT, .EXIT ; System library macros to be used
operating codes to e
make the START: MOV #2,CNTR ; Initialize counter to 2
instructions much MoV #0,SuM ; Initialize sum to 0
easier to understand.
Note that data must LOOP: JSR PC,RNUM ; Jump to subroutine RNUM to input number
still be moved in and ADD $0,5UM ; Add inputted number (in register 0) to sum
out through the DEC CNTR —T ; Decrement counter
registers (register 0 BNE LOOP ; Repeat loop if counter is not equal to 0
in this example).
MOV SUM, 80 : Move sum to register 0
JSR PC, PNUM ; Jump to subroutine PNUM to print sum
LEXIT (in register 0)
CNTR: «BLKW 1 ;s Reserve 1 word of memory space for CNTR
SUM: +BLKW 1 ;7 Reserve 1 word of memory space for SUM
.END START — ;s End of program
FIGURE 13-17
N

Assembly and
machine language.

Programming Languages

BHigh--level languagess: Closern to natural| languagess
{ Machine independent

{ Includes 3GLs (FORTRAN, BASIC, COBOL,C, etc.) and
object - oriented languages (Visual Basic, C#, Python, Java,
etc.)

{ Visual or graphical languages : Use graphical interface to
Create programs

BFourth--genenationn languagess (4GLs). Even closer to
natural languages and easier to work with than high -
level
1 Declarative rather than procedural

{ Includes structured query Ilanguage (SQL wused with
databases

Table 9.1: Code in machine languageto add two integers

Hexadecimal Code in machine language
(1FEF), 0001 L & bl 1110 1111
(240F), . 0010 0100 0000 1111
(1FEF),. 0001 1111 1110 1111
(241F), 0010 0100 0001 1111
(1040),, 0001 0000 0100 0000
(1141) . 0001 0001 0100 0001
(3201) 0011 0010 0000 0001
(2422),. 0010 0100 0010 0010
(1F42), . 0001 402N 0100 0010
(2FFF).. 0010 1111 1111 1T111
(0000),, 0000 0000 0000 0000

18

Table 9.2 Codeinassembly languageto add two integers

19

