
Chapter 6

Memory

2

Chapter 6 Objectives

• Master the concepts of hierarchical memory

organization.

• Understand how each level of memory contributes

to system performance, and how the performance

is measured.

• Master the concepts:

– Cache memory,

– Virtual memory,

– Memory segmentation, paging and

3

6.1 Introduction

• Memory lies at the center of the stored-program
computer.

• In previous chapter, we studied the ways in which

memory is accessed by various ISAs.

• In this chapter, we focus on memory organization.

A clear understanding of these ideas is essential for
the analysis of system performance.

4

6.2 Types of Memory

• There are two kinds of main memory:

– Random access memory, RAM, and

– Read-only-memory, ROM.

• There are two types of RAM,

– Static RAM (SRAM).

• flip-flop, very fast, cache memory

– Dynamic RAM (DRAM)

• capacitors, refresh, slow, simple design, cheap

• S - DRAM : Synchronous DRAM

• DR - DRAM : Direct Rambus DRAM

• DDR - DRAM : Double Data Rate DRAM

5

6.2 Types of Memory

• ROM is used to store permanent data that persists
even while the system is turned off (Non-Volatile).

• Types of ROM

– ROM

– PROM

– EPROM

– EEPROM

– Flash memory

6

6.3 The Memory Hierarchy

• This storage organization can be thought of as a pyramid:

7

6.3 The Memory Hierarchy

• To access a particular piece of data, the CPU first
sends a request to its nearest memory, usually

cache.

• If the data is not in cache, then main memory is

queried. If the data is not in main memory, then
the request goes to disk.

• Once the data is located, then the data, and a
number of its nearby data elements are fetched

into cache memory.

8

6.3 The Memory Hierarchy

• To access a particular piece of data,

 The CPU sends a request to the memory

Memory

n-bits

per word
decoder

M
em

o
ry

 A
d

d
ress R

eg
ister Memory Buffer Register

Addresses

Write

Data

Read

9

6.3 The Memory Hierarchy

• If

 The data is not in cache,

 Then

 Main memory is queried.

• If

 The data is not in main

memory,

 Then

 The request goes to disk

P r o c e s s o r

D a t a a r e t r a n s f e r r e d

Blocks

Upper

(Higher)

level

Lower

level

10

6.3 The Memory Hierarchy

• Once the data is
located, then the

data, and a number

of its nearby data

elements are fetched

into cache memory

P r o c e s s o r

D a t a a r e t r a n s f e r r e d

Upper

(Higher)

level

Lower

level

11

6.3 The Memory Hierarchy

• locality of reference (the principle of locality):

– The same value or related storage locations being

frequently accessed.

• There are three forms of locality:

– Temporal locality- Recently-accessed data elements tend

to be accessed again.

– Spatial locality - Accesses tend to cluster.

– Sequential locality - Instructions tend to be accessed

sequentially.

12

6.3 The Memory Hierarchy

109 Load 100

10A Add 101

10B Store 102

200 Jns 103

10C Load 104

10A Subt 105

400 Skipcond 106

104 Jump 107

Halt 108

17 109

1 10A

0 10B

5 10C

13

6.3 The Memory Hierarchy

• This leads us to some definitions.
– A hit is when data is found at a given memory level.

– A miss is when it is not found.

– The hit rate is the percentage of time data is found at a given
memory level.

– The miss rate is the percentage of time it is not.

– Miss rate = 1 - hit rate.

– The hit time is the time required to access data at a given
memory level.

– The miss penalty is the time required to process a miss,
including the time that it takes to replace a block of memory
plus the time it takes to deliver the data to the processor.

14

6.3 The Memory Hierarchy

• Definitions.

– Hit

– Miss

– Hit rate

– Miss rate

– Miss rate = 1 - hit rate.

– Hit time

– Miss penalty

P r o c e s s o r

D a t a a r e t r a n s f e r r e d

Upper

(Higher)

level

Lower

level

15

6.4 Cache Memory

• The simplest cache mapping scheme is direct

mapped cache.

• In a direct mapped cache consisting of N blocks of

cache, block X of main memory maps to cache block
Y = X mod N.

• Thus, if we have 10 blocks of cache, block 7 of cache

may hold blocks 7, 17, 27, 37, . . . of main memory.

• Once a block of memory is copied into its slot in
cache, a valid bit is set for the cache block to let the

system know that the block contains valid data.

What could happen without having a valid bit?

16

6.4 Cache Memory

• Example:

– Block size is one word of data

Cache

Memory

 0 1 2 3

0 1 2 3

17

6.4 Cache Memory

• Example:

– Block size is one word of data

Cache

Memory

 0 1 2 3 4 5 6 7

 0 1 2 3

18

6.4 Cache Memory

• Example:

– Block size is one word of data

Cache

Memory

 0 1 2 3 4 5 6 7

 0 1 2 3

19

6.4 Cache Memory

• Example:

– Block size is one word of data

Cache

Memory

 0 1 2 3 4 5 6 7

 0 1 2 3

20

6.4 Cache Memory

• Example:

– Block size is one word of data

Cache

Memory

 0 1 2 3 4 5 6 7

 0 1 2 3

21

6.4 Cache Memory

• Example:

– Block size is one word of data

Cache

Memory

 0 1 2 3 4 5 6 7

 0 1 2 3

22

6.4 Cache Memory

• Example:

– Block size is one word of data

Cache

Memory

 0 1 2 3 4 5 6 7

 0 1 2 3

23

6.4 Cache Memory

• Mapping:

– Block size is one word of data

– Cache has 8 entries

– Address is modulo the number of blocks in the cache

24

6.4 Cache Memory

• Mapping:

– Block size is one word of data

– Cache has 8 entries

– Address is modulo the number of blocks in the cache

M e m o r y

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

C a c h e

0

0

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1

1

25

6.4 Cache Memory

• Problem:
– How do we know whether the requested word is in the cache?

• Solution: Tag field
– Added to data word in cache

– Contain address information to where the data belongs

– Need only contain the upper portion of the address

26

6.4 Cache Memory

• Problem:
– How do we know that the block has the valid information?

• Solution: Valid bit
– Added to data word in cache

– 1 means data is valid (valid address)

– 0 means data is invalid (Invalid address)

27

Direct Mapped Cache

• Example

– Draw the cache after inserting the following blocks

10110, 11010, 10000, 00011, 10010

• Initial Cache

Index V Tag Data

000 0

001 0

010 0

011 0

100 0

101 0

110 0

111 0

28

Direct Mapped Cache

• After 10110

• After 11010

Index V Tag Data

000 0

001 0

010 0

011 0

100 0

101 0

110 1 10 Memory(10110)

111 0

Index V Tag Data

000 0

001 0

010 1 11 Memory(11010)

011 0

100 0

101 0

110 1 10 Memory(10110)

111 0

29

Direct Mapped Cache

• After 10000

• After 00011

Index V Tag Data

000 1 10 Memory(10000)

001 0

010 1 11 Memory(11010)

011 0

100 0

101 0

110 1 10 Memory(10110)

111 0

Index V Tag Data

000 1 10 Memory(10000)

001 0

010 1 11 Memory(11010)

011 1 00 Memory(00011)

100 0

101 N

110 1 10 Memory(10110)

111 0

30

Direct Mapped Cache

• After 10010

Index V Tag Data

000 1 10 Memory(10000)

001 0

010 1 10 Memory(10010)

011 1 00 Memory(00011)

100 0

101 0

110 1 10 Memory(10110)

111 0

Direct Mapped Cache

• Check:

 10001

 00110

 10010

 11111

 01110

Index V Tag Data

000 1 10 5120

001 0

010 1 10 124A

011 1 00 74B0

100 0

101 0

110 1 10 381F

111 0

31

32

• The a schematic of what cache looks like.

• Block 0 contains multiple words from main memory,

identified with the tag 00000000.

• Block 1 contains words identified with the tag 11110101.

• The other two blocks are not valid.

Direct Mapped Cache

33

• The size of each field into which a memory address
is divided depends on the size of the cache.

• Suppose our memory consists of 214 words, cache

has 16 = 24 blocks, and each block holds 8 words.

– Thus memory is divided into 214 / 2 8 = 211 blocks.

• For our field sizes, we need 4 bits for the block, 3
bits for the word, and the tag is what’s left over:

Direct Mapped Cache

34

• As an example, suppose a program generates the
address 1AA. In 14-bit binary, this number is:

00000110101010.

• The first 7 bits of this address go in the tag field, the

next 4 bits go in the block field, and the final 3 bits

indicate the word within the block.

Direct Mapped Cache

35

• If subsequently the program generates the address
1AB, it will find the data it is looking for in block

0101, word 011.

• However, if the program generates the address,
3AB, instead, the block loaded for address 1AA

would be evicted from the cache, and replaced by
the blocks associated with the 3AB reference.

Direct Mapped Cache

36

• Instead of placing memory blocks in specific cache
locations based on memory address, we could allow

a block to go anywhere in cache.

• In this way, cache would have to fill up before any

blocks are replaced.

• This is how fully associative cache works.

• A memory address is partitioned into only two fields:

the tag and the word.

Fully Associative Cache

37

Fully Associative Cache

38

• If we have 14-bit memory addresses and a cache
with 16 blocks, each block of size 8. The field

format of a memory reference is:

• When the cache is searched, all tags are searched

in parallel to retrieve the data quickly.

• This requires special, costly hardware.

Fully Associative Cache

39

• No such mapping,

• Each memory block can be placed at any cache

block

• The block that is replaced is the victim block.

• Which block you will replace?

• There are a number of ways to pick a victim,

Fully Associative Cache

40

• An optimal replacement policy would be able to look

into the future to see which blocks won’t be needed

for the longest period of time.

• It is impossible to implement an optimal

replacement algorithm,

• It is instructive to use it as a benchmark for

assessing the efficiency of other schemes.

Replacement Policy

41

• A least recently used (LRU) algorithm keeps track of

the last time that a block was assessed and evicts

the block that has been unused for the longest

period of time.

• The disadvantage of this approach is its complexity:

LRU has to maintain an access history for each

block, which ultimately slows down the cache.

Replacement Policy

42

• First-in, first-out (FIFO) is a popular cache

replacement policy.

• In FIFO, the block that has been in the cache the

longest, regardless of when it was last used.

Replacement Policy

43

• A random replacement policy does what its name

implies: It picks a block at random and replaces it

with a new block.

• Random replacement can certainly evict a block that

will be needed often or needed soon, but it never

thrashes.

Replacement Policy

44

• The performance of hierarchical memory is measured
by its effective access time (EAT).

• EAT is a weighted average that takes into account the

hit ratio and relative access times of successive levels
of memory.

• The EAT for a two-level memory is given by:

 EAT = H AccessC + (1-H) AccessMM.

H is the cache hit rate

AccessC and AccessMM are the access times for cache and main memory, respectively.

Cache performance

45

• For example, consider a system with a main memory
access time of 200ns supported by a cache having a

10ns access time and a hit rate of 99%.

• The EAT is:

 0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns.

• This equation for determining the effective access
time can be extended to any number of memory

levels, as we will see in later sections.

Cache performance

• Read hits
– This is what we want!

• Read misses
– Stall the CPU,
– Fetch block from memory

– Deliver to cache
– Restart

• Write hits:
– Can replace data in cache and memory (write-through)

– Write data only into the cache (write-back the cache later)

• Write misses:
– Read the entire block into the cache, then write the word

Hits vs. Misses

46

Handling Cache Misses

• The action taken for cache miss depends on whether

the action is to access instruction or data

• Data Access

– Stall the processor until the memory responds with the data

• Instruction access:

– The contents of the instruction register are invalid

• Get the instruction from the lower-level memory into the cache

47

Write-Through Approach

• Idea:

– Always write data into both memory & cache

• Steps:

1. Index the cache (Bits 15-2 of address)

2. Write the tag, data, & valid bit into cache

3. Write the word to main memory using the entire address

• Advantages

– Simple algorithm

• Disadvantages

– Poor performance

• Writing into main memory slows down the machine

48

Write-Back Approach

• Handles writes by updating values only to the block in the

cache, then writing the modified block to the lower level
of the hierarchy when the block is replaced

• Steps:
1. Index the cache

2. Write the tag, data, & valid bit into cache
3. The modified block is written to the memory only when it

is replaced

• Advantages:
– Improves performance

• Disadvantages:
– Complex algorithm

49

50

• Cache replacement policies must also take into
account dirty blocks, those blocks that have been

updated while they were in the cache.

• Dirty blocks must be written back to memory. A
write policy determines how this will be done.

• There are two types of write policies, write through
and write back.

• Write through updates cache and main memory
simultaneously on every write.

Cache Write Policy

51

6.4 Cache Memory

• Write back (also called copyback) updates memory

only when the block is selected for replacement.

• The disadvantage of write through is that memory

must be updated with each cache write, which slows

down the access time on updates. This slowdown is

usually negligible, because the majority of accesses

tend to be reads, not writes.

• The advantage of write back is that memory traffic is

minimized, but its disadvantage is that memory does

not always agree with the value in cache, causing

problems in systems with many concurrent users.

52

6.6 A Real-World Example

• The Pentium architecture supports both paging and

segmentation, and they can be used in various

combinations including unpaged unsegmented,

segmented unpaged, and unsegmented paged.

• The processor supports two levels of cache (L1 and

L2), both having a block size of 32 bytes.

• The L1 cache is next to the processor, and the L2

cache sits between the processor and memory.

• The L1 cache is in two parts: and instruction cache (I-

cache) and a data cache (D-cache).

The next slide shows this organization schematically.

53

6.6 A Real-World Example

54

• Computer memory is organized in a hierarchy, with

the smallest, fastest memory at the top and the

largest, slowest memory at the bottom.

• Cache memory gives faster access to main memory,

while virtual memory uses disk storage to give the

illusion of having a large main memory.

• Cache maps blocks of main memory to blocks of

cache memory. Virtual memory maps page frames

to virtual pages.

• There are three general types of cache: Direct

mapped, fully associative and set associative.

Chapter 6 Conclusion

55

• With fully associative and set associative cache,
as well as with virtual memory, replacement

policies must be established.

• Replacement policies include LRU, FIFO, or LFU.

These policies must also take into account what
to do with dirty blocks.

Chapter 6 Conclusion

