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Chapter 6 Objectives 

• Master the concepts of hierarchical memory 

organization. 

• Understand how each level of memory contributes 

to system performance, and how the performance 

is measured. 

• Master the concepts:  

– Cache memory,  

– Virtual memory,  

– Memory segmentation, paging and  
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6.1 Introduction 

• Memory lies at the center of the stored-program 
computer. 

 

• In previous chapter, we studied the ways in which 

memory is accessed by various ISAs. 

 

• In this chapter, we focus on memory organization.  

A clear understanding of these ideas is essential for 
the analysis of system performance. 
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6.2 Types of Memory 

• There are two kinds of main memory:  

– Random access memory, RAM, and  

– Read-only-memory, ROM. 

• There are two types of RAM,  

– Static RAM (SRAM). 

• flip-flop, very fast, cache memory 

– Dynamic RAM (DRAM)  

• capacitors, refresh, slow, simple design, cheap  

• S - DRAM  : Synchronous DRAM 

• DR - DRAM : Direct Rambus DRAM 

• DDR - DRAM : Double Data Rate DRAM 
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6.2 Types of Memory 

• ROM is used to store permanent data that persists 
even while the system is turned off (Non-Volatile). 

• Types of ROM 

– ROM 

– PROM 

– EPROM 

– EEPROM 

– Flash memory 
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6.3 The Memory Hierarchy 

• This storage organization can be thought of as a pyramid: 
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6.3 The Memory Hierarchy 

• To access a particular piece of data, the CPU first 
sends a request to its nearest memory, usually 

cache.   

• If the data is not in cache, then main memory is 

queried.  If the data is not in main memory, then 
the request goes to disk. 

• Once the data is located, then the data, and a 
number of its nearby data elements are fetched 

into cache memory. 
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6.3 The Memory Hierarchy 

• To access a particular piece of data,  

 The CPU sends a request to the memory 
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6.3 The Memory Hierarchy 

• If  

 The data is not in cache, 

 Then 

 Main memory is queried.   

• If  

 The data is not in main 

memory,  

 Then  

 The request goes to disk 
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6.3 The Memory Hierarchy 

• Once the data is 
located, then the 

data, and a number 

of its nearby data 

elements are fetched 

into cache memory 
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6.3 The Memory Hierarchy 

• locality of reference (the principle of locality): 

– The same value or related storage locations being 

frequently accessed. 

 

• There are three forms of locality: 

– Temporal locality- Recently-accessed data elements tend 

to be accessed again. 

– Spatial locality - Accesses tend to cluster. 

– Sequential locality - Instructions tend to be accessed 

sequentially. 
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6.3 The Memory Hierarchy 
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6.3 The Memory Hierarchy 

• This leads us to some definitions. 
– A hit is when data is found at a given memory level. 

– A miss is when it is not found. 

– The hit rate is the percentage of time data is found at a given 
memory level. 

– The miss rate is the percentage of time it is not.  

– Miss rate = 1 - hit rate. 

– The hit time is the time required to access data at a given 
memory level. 

– The miss penalty is the time required to process a miss, 
including the time that it takes to replace a block of memory 
plus the time it takes to deliver the data to the processor. 



14 

6.3 The Memory Hierarchy 

• Definitions. 

– Hit  

– Miss 

– Hit rate  

– Miss rate  

– Miss rate = 1 - hit rate. 

– Hit time 

– Miss penalty 
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6.4 Cache Memory 

• The simplest cache mapping scheme is direct 

mapped cache. 

• In a direct mapped cache consisting of N blocks of 

cache, block X of main memory maps to cache block 
Y = X mod N. 

• Thus, if we have 10 blocks of cache, block 7 of cache 

may hold blocks 7, 17, 27, 37, . . . of main memory. 

• Once a block of memory is copied into its slot in 
cache, a valid bit is set for the cache block to let the 

system know that the block contains valid data. 

What could happen without having a valid bit?  
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6.4 Cache Memory 

• Example: 

– Block size is one word of data 

Cache 

Memory 
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6.4 Cache Memory 

• Example: 

– Block size is one word of data 

Cache 

Memory 

  0    1      2    3    4     5     6     7 

  0   1     2     3 



18 

6.4 Cache Memory 

• Example: 

– Block size is one word of data 
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6.4 Cache Memory 

• Example: 

– Block size is one word of data 
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6.4 Cache Memory 

• Example: 

– Block size is one word of data 
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6.4 Cache Memory 

• Example: 

– Block size is one word of data 
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6.4 Cache Memory 

• Example: 

– Block size is one word of data 
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6.4 Cache Memory 

• Mapping: 

– Block size is one word of data 

– Cache has 8 entries 

– Address is modulo the number of blocks in the cache 
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6.4 Cache Memory 

• Mapping: 

– Block size is one word of data 

– Cache has 8 entries 

– Address is modulo the number of blocks in the cache 

M e m o r y 

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 

C a c h e 

0
 

0
 

0
 

0
 

0
 

1
 

0
 

1
 

0
 

0
 

1
 

1
 

1
 

0
 

0
 

1
 

0
 

1
 

1
 

1
 

0
 

1
 

1
 

1
 



25 

6.4 Cache Memory 

• Problem: 
– How do we know whether the requested word is in the cache? 

 

• Solution: Tag field 
– Added to data word in cache 

– Contain address information to where the data belongs 

– Need only contain the upper portion of the address 
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6.4 Cache Memory 

• Problem: 
– How do we know that the block has the valid information? 

 

• Solution: Valid bit 
– Added to data word in cache 

– 1 means data is valid (valid address) 

– 0 means data is invalid (Invalid address) 
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Direct Mapped Cache 

• Example 

– Draw the cache after inserting the following blocks 

10110, 11010, 10000, 00011, 10010   

• Initial Cache 

Index V Tag Data 

000 0 

001 0 

010 0 

011 0 

100 0 

101 0 

110 0 

111 0 
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Direct Mapped Cache 

• After 10110 
 
 
 
 

• After 11010 

Index V Tag Data 

000 0 

001 0 

010 0 

011 0 

100 0 

101 0 

110 1 10 Memory(10110) 

111 0 

Index V Tag Data 
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111 0 



29 

Direct Mapped Cache 

• After 10000 
 
 
 
 

• After 00011 

Index V Tag Data 

000 1 10 Memory(10000) 

001 0 

010 1 11 Memory(11010) 

011 0 

100 0 

101 0 

110 1 10 Memory(10110) 

111 0 

Index V Tag Data 

000 1 10 Memory(10000) 

001 0 

010 1 11 Memory(11010) 

011 1 00 Memory(00011) 

100 0 

101 N 

110 1 10 Memory(10110) 

111 0 
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Direct Mapped Cache 

• After 10010 
 
 
 
 

Index V Tag Data 

000 1 10 Memory(10000) 

001 0 

010 1 10 Memory(10010) 

011 1 00 Memory(00011) 

100 0 

101 0 

110 1 10 Memory(10110) 

111 0 



Direct Mapped Cache 

• Check:  
 

 10001 
 
 00110 
 
 10010 
  
 11111 
 
 01110 

 
 

Index V Tag Data 

000 1 10 5120 

001 0 

010 1 10 124A 

011 1 00 74B0 

100 0 

101 0 

110 1 10 381F 

111 0 
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• The a schematic of what cache looks like. 
 

 

 

 

 

• Block 0 contains multiple words from main memory, 

identified with the tag 00000000.   

• Block 1 contains words identified with the tag 11110101. 

• The other two blocks are not valid. 

Direct Mapped Cache 
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• The size of each field into which a memory address 
is divided depends on the size of the cache. 

• Suppose our memory consists of 214 words, cache 

has 16 = 24 blocks, and each block holds 8 words. 

– Thus memory is divided into 214 / 2 8 = 211 blocks. 

• For our field sizes, we need 4 bits for the block, 3 
bits for the word, and the tag is what’s left over: 

Direct Mapped Cache 
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• As an example, suppose a program generates the 
address 1AA. In 14-bit binary, this number is: 

00000110101010. 

• The first 7 bits of this address go in the tag field, the 

next 4 bits go in the block field, and the final 3 bits 

indicate the word within the block. 

Direct Mapped Cache 
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• If subsequently the program generates the address 
1AB, it will find the data it is looking for in block 

0101, word 011. 

 

 

 

 

• However, if the program generates the address, 
3AB, instead, the block loaded for address 1AA 

would be evicted from the cache, and replaced by 
the blocks associated with the 3AB reference. 

Direct Mapped Cache 
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• Instead of placing memory blocks in specific cache 
locations based on memory address, we could allow 

a block to go anywhere in cache. 

• In this way, cache would have to fill up before any 

blocks are replaced. 

• This is how fully associative cache works.   

• A memory address is partitioned into only two fields: 

the tag and the word. 

Fully Associative Cache 
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Fully Associative Cache 



38 

• If we have 14-bit memory addresses and a cache 
with 16 blocks, each block of size 8.  The field 

format of a memory reference is: 

 

 

 

• When the cache is searched, all tags are searched 

in parallel to retrieve the data quickly. 

• This requires special, costly hardware. 

Fully Associative Cache 
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• No such mapping, 

• Each memory block can be placed at any cache 

block 

• The block that is replaced is the victim block. 

• Which block you will replace? 

• There are a number of ways to pick a victim,  

Fully Associative Cache 
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• An optimal replacement policy would be able to look 

into the future to see which blocks won’t be needed 

for the longest period of time. 

• It is impossible to implement an optimal 

replacement algorithm,  

• It is instructive to use it as a benchmark for 

assessing the efficiency of other schemes. 

Replacement Policy 
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• A least recently used (LRU) algorithm keeps track of 

the last time that a block was assessed and evicts 

the block that has been unused for the longest 

period of time. 

• The disadvantage of this approach is its complexity: 

LRU has to maintain an access history for each 

block, which ultimately slows down the cache. 

Replacement Policy 
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• First-in, first-out (FIFO) is a popular cache 

replacement policy. 

• In FIFO, the block that has been in the cache the 

longest, regardless of when it was last used. 

Replacement Policy 
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• A random replacement policy does what its name 

implies: It picks a block at random and replaces it 

with a new block. 

• Random replacement can certainly evict a block that 

will be needed often or needed soon, but it never 

thrashes. 

Replacement Policy 
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• The performance of hierarchical memory is measured 
by its effective access time (EAT). 

 

• EAT is a weighted average that takes into account the 

hit ratio and relative access times of successive levels 
of memory. 

 

• The EAT for a two-level memory is given by: 

  EAT = H  AccessC + (1-H )  AccessMM. 

H is the cache hit rate  

AccessC and AccessMM are the access times for cache and main memory, respectively. 

Cache performance 
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• For example, consider a system with a main memory 
access time of 200ns supported by a cache having a 

10ns access time and a hit rate of 99%. 

 

• The EAT is: 

  0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns. 

 

• This equation for determining the effective access 
time can be extended to any number of memory 

levels, as we will see in later sections. 

Cache performance 



• Read hits 
– This is what we want! 

• Read misses 
– Stall the CPU, 
– Fetch block from memory 

– Deliver to cache 
– Restart  

• Write hits: 
– Can replace data in cache and memory (write-through) 

– Write data only into the cache (write-back the cache later) 

• Write misses: 
– Read the entire block into the cache, then write the word 

Hits vs. Misses 
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Handling Cache Misses 

• The action taken for cache miss depends on whether 

the action is to access instruction or data 

• Data Access 

– Stall the processor until the memory responds with the data 

• Instruction access:  

– The contents of the instruction register are invalid 

• Get the instruction from the lower-level memory into the cache 
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Write-Through Approach 

• Idea: 

– Always write data into both memory & cache 

• Steps: 

1. Index the cache (Bits 15-2 of address) 

2. Write the tag, data, & valid bit into cache 

3. Write the word to main memory using the entire address 

• Advantages 

– Simple algorithm 

• Disadvantages 

– Poor performance 

• Writing into main memory slows down the machine 
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Write-Back Approach  

• Handles writes by updating values only to the block in the 

cache, then writing the modified block to the lower level 
of the hierarchy when the block is replaced 

• Steps: 
1. Index the cache 

2. Write the tag, data, & valid bit into cache 
3. The modified block is written to the memory only when it 

is replaced 

• Advantages: 
– Improves performance 

• Disadvantages: 
– Complex algorithm 

49 
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• Cache replacement policies must also take into 
account dirty blocks, those blocks that have been 

updated while they were in the cache. 

• Dirty blocks must be written back to memory.  A 
write policy determines how this will be done. 

• There are two types of write policies, write through 
and write back. 

• Write through updates cache and main memory 
simultaneously on every write. 

Cache Write Policy 
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6.4 Cache Memory 

• Write back (also called copyback) updates memory 

only when the block is selected for replacement. 

• The disadvantage of write through is that memory 

must be updated with each cache write, which slows 

down the access time on updates. This slowdown is 

usually negligible, because the majority of accesses 

tend to be reads, not writes. 

• The advantage of write back is that memory traffic is 

minimized, but its disadvantage is that memory does 

not always agree with the value in cache, causing 

problems in systems with many concurrent users. 
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6.6 A Real-World Example 

• The Pentium architecture supports both paging and 

segmentation, and they can be used in various 

combinations including unpaged unsegmented, 

segmented unpaged, and unsegmented paged. 

• The processor supports two levels of cache (L1 and 

L2), both having a block size of 32 bytes. 

• The L1 cache is next to the processor, and the L2 

cache sits between the processor and memory. 

• The L1 cache is in two parts: and instruction cache (I-

cache) and a data cache (D-cache). 

The next slide shows this organization schematically.  
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6.6 A Real-World Example 
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• Computer memory is organized in a hierarchy, with 

the smallest, fastest memory at the top and the 

largest, slowest memory at the bottom. 

• Cache memory gives faster access to main memory, 

while virtual memory uses disk storage to give the 

illusion of having a large main memory. 

• Cache maps blocks of main memory to blocks of 

cache memory. Virtual memory maps page frames 

to virtual pages. 

• There are three general types of cache: Direct 

mapped, fully associative and set associative. 

Chapter 6 Conclusion 
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• With fully associative and set associative cache, 
as well as with virtual memory, replacement 

policies must be established. 

• Replacement policies include LRU, FIFO, or LFU. 

These policies must also take into account what 
to do with dirty blocks. 

Chapter 6 Conclusion 


