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Abstract

Higher order modes in optical fibers exhibit large, negative chromatic dispersion when
operated near cutoff. Mode LPy, represents a large negative dispersion than other modes.
Hence, the LPy; mode is used as a dispersion compensator to give a short length dispersion
compensating fiber (DCF). The DCF length is calculated in the wavelength band 1530 —
1570 nm. It is found to be 25.168 m per 1 km long of the conventional single-mode fiber
(SMF) at 1550 nm. Furthermore the dispersion slope and relative dispersion slope is
obtained for (DCF) and (SMF).

I. INTRODUCTION

The transmission speed and capacity of optical fiber transmission systems have been increasing rapidly over
the past few years. However, transmission capability of conventional fiber networks is limited due to system
attenuation and dispersion. Whereas attenuation tends to decrease the repeater spacing, dispersion limits the
bandwidth of the data which may be transmitted over the fiber. With the advent of erbium-doped fiber
amplifiers (EDFAs), limitations due to fiber attenuation have been virtually removed in the gain-band. Since
the use of EDFAs requires operation in the wavelength region around 1550 nm, chromatic dispersion will be
the primary limitation to future upgrades in embedded networks comprised of conventional single-mode fibers
with zero dispersion wavelength near 1300 nm.

Much installed SMFs are designed for the transmission at 1300 nm optical window and have a considerable
chromatic dispersion (typically about 20 ps.nm™.km™) at the currently preferred wavelength, 1550 nm. To
increase the transmission capability of conventional fiber networks, various dispersion compensation
techniques have-been developed in the recent years. This includes: dispersion compensating fibers (DCFs) [11,
the use of dispersion compensation based on dual-mode optical fibers [2], the use of optical fiber Bragg grating
[3.4], and the use of nonlinear optical phase conjugations [5,6]. Tomizawa et al. proposed another
compensation technique based on an automatic dispersion equalization [7], and also, compensation using
soliton transmission was developed in many studies [8, 9].

The DCF which has a negative dispersion coefficient at the signal wavelength is the most practical means to
compensate for chromatic dispersion for reasons of manufacturability, stability over temperature changes, and
wide band dispersion compensating characteristics.

In this work, the large negative waveguide dispersion that occurs for higher order modes in optical fibers near
. cutoff will be used to compensate the chromatic dispersion in a successive form. This technique was first
proposed by Poole et al. [10], but the dispersion slopes of the single mode fiber and the compensating fiber
were not considered in his work. Ideally. all of the optical power in the compensating fiber is in the desired
higher order mode whose cutoff wavelength is close to the operating wavelength.
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As a first step in our work. dispersion compensation will be achieved if the total dispersion of the SMF and that
of the DCF are matched. Because the dispersion of the DCF can be quite large near cutoff. relatively small
lengths of DCF are needed to compensate a given amounts of positive dispersion. The second step to get a
better control is to match the dispersion slopes of the SMF and the DCF as well. This can be achieved if the
ratio of slope to dispersion (Relative Dispersion Slope, RDS) for the SMF equals that of the DCF [11].

In the proposed system, two mode converters must be used. An input spatial mode converter is used to convert
the spatial mode of the single mode fiber into the higher order mode of the compensating fiber (LPy;, in this
work), and an output mode converter is used to convert back to the fundamental mode in the output single
mode fiber. Various mode converters have been reported which require a high conversion efficiency,
broadband operation, and low insertion loss [10, 12].

In this paper, we study the dispersion of the higher orders mode, and use the large negative dispersion LPg, to
compensate the dispersion of SMF. In Sec.Il, the dispersion of SMF and higher order modes is presented. In
addition we present the dispersion slope and relative dispersion slope of SMF and DCF. The results and
discussion are given in Sec. III with a summary of findings. This is followed by the conclusions in Sec. IV.

II. MODEL ANALYSIS
The total chromatic dispersion in a SMF, Dy, is given by:

D, =D, +D,, ¢))
where Dy, and Dy are the material and waveguide dispersion parameters, respectively. The material dispersion
is due to the wavelength dependency of the refractive index, n, of the fiber material. The parameter Dy, is
expressed as [13]:

A d’a

p, =-2.941" 2
Moo dp? ®

The variation of the refractive index, n, with the wavelength, A, is given by the well known Sellmeier equation

[14]:
1+Z —bz’

where a; and bl are constants depending on the germania doping ratio in the fiber core.

©))

The waveguide dispersion arises from the propagation constant of a mode and is also a function of wavelength.
The waveguide dispersion, Dy, is given by [10]:

A1l ~
D, = -8-———-‘11(1/), @)
wac

where (V) is a dimensionless function given by [10]:

, d’ -
P)=v— e (——] : (5)
U and V are parameters defined, in terms of the core radius, a, by [15]:
U:a(kzn,zﬂﬂzy2 , (6)
V==kan, V2A 7

The interdependence of the waveguide parameters U and V is determined by the characteristic equation which
expresses the boundary conditions of the mode field at the core cladding interface | 15]:
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K, W
U =W -1 ( ) .

J,(U) K, ()
where W? = V2 - (%, J,(U). and K, (W )are Bessel and modified Bessel functions. and / is the first mode
number determining the azimuthal symmetry of LP,, mode.

®

Setting W = 0 yields the cutoff valuesJ, (U )= 0. For / = 0, this includes the roots of the Bessel

functionJ_, (/) = —J, (U), which we shall count so as to include J,(0) = 0 as the first root. We, then, can

obtain the cutoff values indicated in Fig. 2 for the modes LPy, and LP;,. In the limit of W-—co, we have
Ji(U)=0. Thus, the solutions for U are between the zeros of J;;(U) and Jy(U).

For example, for the fundamental mode, LPy,, the cutoff value is the first root of J;(U) = 0. And in the limit of
W-—so0, the first root of J,(U)=0 represents the limit of U. As shown in Fig. 1 [15], the values of U for LPy, are
in the range 0 < U < 2.405.
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Fig. 1. The regions of parameter U for modes of order I= 0, 1.

To get the waveguide dispersion Dy of the higher order modes, we try to solve the characteristic equatién of
the mode field Eq.(8) by using the iteration method for the values of U(V) for each mode. Substituting U(V)
into Eq.(5), we can find ¥(V) and consequently, one can calculate the waveguide dispersion, Dy.

In conventional SMF operating in the fundamental mode, LPy, at 1550 nm optical window, material
dispersion, which has a positive sign, typically dominates. But the waveguide dispersion for the higher order
modes is expected to be negatively large compared to the material dispersion near cutoff. The material
dispersion is the same for all modes, while the waveguide dispersion is different for each mode of the fiber.

The condition for perfect dispersion compensation is easily [14]:
D, L +D,-L, =0, ©)

where D, is the total dispersion of SMF of length L; and D, is the total dispersion of the DCF of length L,.
Therefore:

L,= —(Dl /Dz)' L, (10)

For practical reasons, L should be as small as possible. This is possible only if the DCF has a large negative
value of D-.

However. Optical pulses still experience broadening because of higher-order dispersive effects. The dispersive
effects do not disappear completely at zcro-dispersion wavelength A = A,p. This feature can be understood by
noting that the dispersion cannot be made zero at all wavclengths contained within the pulse spectrum centered
at Azp. Clearly, the wavelength dependence of D will play a role in pulse broadening. Higher-order dispersive
cffects are governed by the dispersion slope S. and it can be written as follows [14].
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S=Z—g—=(2ﬂ0/12)2ﬂ3+(47r0//13) ) (11)

where f, =dpf, / do =d’B/dw’ is the third-order dispersion parameter. At A = Azp, B, = 0. and S is
proportional to f3;.

For multichannel high-speed WDM systems, dispersion compensation over a broad wavelength range is
necessary. This means that besides the dispersion it is also necessary to compensate for the dispersion slope.
The total dispersion slope of the system is given by [14]:

Sy =Sgm Lar +Sper Lice- (12)

As seen from Eq. (12), a negative dispersion slope of the DCF is necessary in order to achieve slope
compensation St = 0. If the length of the DCF is chosen to give full dispersion compensation D1 = 0, then the
condition for full slope compensation is that the relative dispersion slope RDS of the DCF shall be equal to the
relative dispersion slope of the standard single-mode fiber:

RDS 4. = RDS o s 13)

where the relative dispersion slope is defined as the ratio of dispersion slope to dispersion:
S .
RDS =—. (14)
D

III. RESULTS AND DISCUSSIONS

Here are the results obtained for compensating chromatic dispersion that makes use of the large negative
waveguide dispersion of the higher order modes close to cutoff. Relatively small lengths of the DCF are
needed. To evaluate the waveguide dispersion Dy for higher order modes, we begin with solving the
characteristic equation of the mode field at the core cladding interface, Eq. (8). Using the iteration method, one
can get the values of U parameter for each value of normalized frequency V.

For example, we can obtain the values of U parameter for LP;, mode. Figure 2 displays the waveguide
parameter U as a function of V for LP;, mode. It may be seen that values of U parameter that solves the
characteristic equation are in the same bounded values. The same procedure could be done for all other modes
in the fiber. For LPy, the values of U are bounded between 2.405 < U < 5.520. Figure 3 shows the parameter
U(V) for the LPy,; mode. As shown, the parameter U has values between 2.403, and 5.520.
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Fig.2. The waveguide parameter U as a function of Fig.3. The waveguide parameter 1] as a function of
wavelength for the 1.Py; mode. wavelength for the 1.Py; mode.
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Through U(V), one can obtain the waveguide parameter (V). Eq. (5). Figure 4 shows the function ‘¥(V) for
the LP,; mode. It is clear that, in the fundamental mode region where V is less than 2.405, W(V) is increasing
(in a negative value) and has a maximum at V=1.15. Also, one can notice that ¥(V) is going to zero outside the
true single-mode region.
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Fig.d. Dispersion parameter W(V) versus normalized Fig.5. Dispersion parameter ¥(V) versus normalized
frequency for the LPy; mode. frequency for the LPg mode.

Similarly, one gets ¥(V) for LPy, mode, Fig. 5. We can seen that the magnitude of (V) rises sharply near
cutoff. In addition, the magnitude of ¥(V) near cutoff for LPy, is more than the order of magnitude in the
fundamental mode LPy,. The waveguide dispersion Eq. (4), for LPy; and LPy, mode are now obtained.

In the same manner, the study can be extended to the modes LP;;, LP;,. But here, we are concerning with LPy,
because it has the larger negative value of the waveguide dispersion than the other modes.

A sample of results for the LPy, mode may be taken as follows: Fig. 6 shows an example of the waveguide
dispersion that can be obtained for the LPy, mode in a step index fiber near cutoff. The dispersion curve is for a
fiber with a core refractive index n = 1.45, a relative refractive index difference, A, = 0.02 and a core radius
adjusted to make the cutoff wavelength for LPy, mode A: = 1620 nm.
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Fig.6. The waveguide dispersion parameter versus
wavelength for the L.Pg, mode near cutoff.
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Fig.7. Total dispersion of the LPyp, mode versus wavelength
near cutoff.

Figure 7 represents the total dispersion of the LP;, mode as a function of wavelength. It is clear that the
waveguide dispersion is large and opposite in sign to the material dispersion. The summation is negative
because the waveguide dispersion is dominated.
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Now, we try to study the dispersion compensation with DCF of LPy, mode connected to LP; mode. For a
conventional SMF, a step index fiber a core radius of 4.5 um, A = 0.22%, and n; = 1.45 was assumed for
comparison with the proposed DCF.

Figure 8 shows the material, waveguide, and the total dispersion of SMF of LPy,. It is noted that, the total
chromatic dispersion at 1.55 pm, including both the material and waveguide dispersion, is 16 ps.nm™ km.
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Fig.8. Material, waveguide and total dispersion as a Fig.9. Total chromatic dispersion curve for the LPy, of the
function of wavelength for the LPy; mode. SMF and the LPy, of the DCF.

The dispersion curves for the LPy mode of SMF and LP, mode of DCF in the C-band are shown in Fig.9. The
length, L,, of the DCF can be obtained using Eq.(10) at a specific wavelength. For a SMF with length L, =
1 km, the DCF fiber can compensate the chromatic dispersion with an L, = 25.168 m at 1.55 ym.

However, the advent of wavelength-division multiplexing (WDM) means that dispersion should be
compensated, not just at one wavelength, but over a great wavelength range. Figure 10 shows the value of L, of
the DCF at some certain wavelengths in the conventional band 1530 to 1570 nm. Note that, the length of DCF
decreases with the wavelength due to the large negative dispersion value at the end of band.
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Fig.10. The length of the DCF over the conventional band (1530 ~ 1570 nm).

For multichannel high-speed WDM systems, dispersion compensation over a broad wavelength range is
necessary. We have to not only compensate for dispersion at one wavelength exactly but also at all other
wavelengths. This implies that we also have to compensate for the slope of dispersion. To calculate the
dispersion slope, the total dispersion of SMF and DCF of the higher order mode LPy, are fitted and obtained as
a function of wavelength. Then, the dispersion slope S of the SMF and DCF are obtained by taking thc
derivatives of the total dispersion D. As we discuss earlicr, the full slope compensation is that the relative
dispersion slope RDS of the DCF shall be equal to the relative dispersion slope of the SMF.






