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Abstract—Dynamic photonic crystals structures have been 
suggested in previous works [1-2] for optical storage and 
processing. By optimizing the radius of the dielectric rods in a 
triangular lattice structure, the present work gives maximum 
mode localization in the photonic bandgap. Preserving the 
translational invariance and adiabaticity, using the new model 
leads to higher bandwidth compression capabilities. While 
increasing the bandwidth, this design does not show significant 
increase in group-velocity dispersion Predictions from first 
principle analysis are confirmed by quantitative analysis.  
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I.  INTRODUCTION 
Photonic crystals (PhC) have been an area of intensive 

research for the past two decades. As an optical analog to 
semiconductors, PhC offer unprecedented capabilities for light 
manipulation. In an attempt to address the difficult and 
important problem of light storage, a dynamic PhC structure is 
suggested [1-2]. It is basically a coupled resonator array 
system which can be constructed from two-dimensional PhC 
structures. By modulating the refractive index of the system, it 
behaves as both a tunable bandwidth filter and a tunable delay 
element [1]. Passing the first step of simulation validation of 
the theory, extensive work is required in order to reach a final 
model for fabrication. The original model for the dynamic 
process is based on a two dimensional square lattice of 
dielectric rods with background dielectric constant of 12.25 
[2]. In two dimensions, there are two other geometries that can 
be investigated for this application: triangular lattice and 
honeycomb lattice. The former has a more circular Brillouin 
zone than the square lattice. In this way, the bandgaps at the 
zone edges are easier to overlap and less index contrast is 
required to obtain a TM gap. While the latter can give rise to a 
larger gap, this requires a smaller feature length than that 
required for the triangular lattice at λ=1.55µm. For this reason, 
a triangular lattice based system is suggested in another work 
[3]. In the present work, this structure is optimized for optical 
storage and processing. By investigating the effect of the 
radius of the dielectric rods on the size of the photonic 
bandgap, an optimum radius can be used for maximum 
bandwidth compression capabilities of the system. 

The optimum radius of the dielectric rod is found in the 
first part. This radius is then used to design a dynamic 
structure for optical storage. Structure performance is finally 
evaluated and compared to that of the previous structures. 

II. CONSTRUCTING THE MODEL  

Figure 1 shows two unit cells of the translationally invariant 
system used to   manipulate   light pulses [2]. This system 
consists of a waveguide side coupled to two cavities [2]. The 
original model consists of a square lattice of dielectric rods 
with a dielectric constant εr=12.25 and a radius r=0.2a 
embedded in air, where ‘a’ is the lattice constant [4].  
Preserving the two necessary conditions for using dynamic 
refractive index modulation, the translational invariance and 
adiabaticity [1], a triangular lattice structure is proposed in 
another work [3]. It is based on background GaAs dielectric 
(εr=11.4 at λ=1.55µm [5]) and r=0.2a.  

An optimization of this structure for optical storage is 
carried out here by investigating for the optimum radius that 
can give a maximum gap-midgap ratio for the same dielectric 
material and lattice geometry.  

For a triangular lattice structure with a background 
εr=11.4, Fig. 2 shows the effect of varying the rods radius on 
the size of the first bandgap. From the figure, the optimum 
radius for the background dielectric rods is r=0.17a. This 
radius corresponds to a maximum value for gap-midgap ratio 
Δω/ω0. Δω is the bandgap size and ω0 is the midgap 
frequency. This corresponds to Δω/ω0=47.7%. Compared to 
Δω/ω0=46.6% for the same system with r=0.2a, the new 
model offers an advantage in the defect mode localization. 

 
  

Figure 1.  Schematic of two unit cells of the coupled-cavity structure used to 
stop light. The cavities couple to the waveguide with a coupling rate of γi.The 

length of the unit cell is l = l
1 
+l

2 
[2]. 
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Figure 2.  The effect of varying the radius of the dielectric rods on the size of 
the first bandgap for a triangular lattice structure (εr=11.4).  This curve is 

calculated using an FDTD algorithm.  

This increase in gap-midgap ratio corresponds to a 
bandgap size increase   by 0.02μm at an operating  wavelength 
λ=1.55 μm. Although this increase in the width of the bandgap 
can not be directly interpreted to an increase in the pulse 
compression bandwidth, this increase contributes in two ways. 
First, it leads to better localization of the defect modes in the 
bandgap. When the exponential nature of these modes is 
considered, a high pulse bandwidth to compress is thus 
obtained. Second, the quality factors for these modes increase 
when the gap widens. 

In order to evaluate the performance of the system, both 
the transmission characteristics and band structure should be 
calculated. The intensity transmission coefficient T of the 
system shown in Fig. 1 can be calculated as follows [4] [6] [7] 
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where 2θ is the round trip phase angle accumulated in the 
waveguide sections: θ=0.5Arg(r1r2e-2jβ(ω)l1), β(ω) is the 
waveguide dispersion. ri and ti are the reflection and 
transmission coefficients of the ith cavity given [4] by 
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In order to obtain the band structure of such a system, the 
transmission matrix should be found a priori. If Tci and Tli are 
the transmission matrices for the ith waveguide side coupled to 
a  single  resonator  and  waveguide  section respectively, 
(i=1, 2), the transmission matrix through an entire unit cell can 
be found [8] to be  

2211 lclc ΤΤΤΤ=Τ                             (4) 

where 
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where ωi, and 1/τi are the resonance frequency and coupling 
rate to the waveguide of the ith resonator. τi is the 
corresponding lifetime. 

Using the above model, the band diagram for equal 
coupling rate cavities and ignoring any direct coupling 
between side cavities is found [8] to be 
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This analysis is based on the representation of the 
eigenvalues of T as e-jk(ω)l, and ejk(ω)l (because det (T) =1); 
where k is the Bloch wave vector of the entire system.  

III. MODEL ANALYSIS 
Results obtained from simulations verify the qualitative 

analysis given at the beginning of the preceding section. Three 
systems are considered here: the original square lattice 
structure (εr=12.25 and r=0.2a) [9-10], the triangular lattice 
structure suggested in a previous work [3] and being 
optimized here (εr=11.4 and r=0.2a), and the optimized system 
proposed in this work (εr=11.4 and r=0.17a). The transmission 
characteristics are calculated using the parameters obtained 
from simulating these systems and using (1) – (3) given in the 
preceding section. While the former two systems are adjusted 
to have the same center frequency of ωo=0.357 (2πc/a), this 
constraint is relaxed in the design of the latter for two main 
reasons. First, because the bandgap of the new system is 
frequency shifted upwards, preserving the original center 
frequency leads to an operating frequency range being 
deviated from the middle of the bandgap. In this way, the 
defect modes are not well localized at the center of the gap. 
The quality factor is reduced, and the main objective behind 
building this system is violated. Second, in order to study the 
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effect of different parameters on the system, only one is 
considered at a time and keeping the remaining parameters 
unchanged. The refractive index modulation of the cavities is 
kept the same for all structures. ∆ ≡ |ω1–ω2|τ is the normalized 
frequency separation of the middle band for a system of 
cavities of resonance frequencies ω1,2 = ωo ±  ∆/ 2τ [5]. τ is the 
lifetime of the resonant cavities (taken to be the same for both 
cavities). Following the same refractive index modulation for 
all structures constructed in this work, simulation results can 
be summarized as follows. The compressible bandwidths for 
the square lattice, triangular lattice with r=0.2a, and triangular 
lattice with r=0.17a are ∆=3.189, ∆=10.129, and ∆=13.74 
respectively. The transmission characteristics of both three 
systems are shown in Fig. 3. 

The band structures calculated using (4) – (8) are shown in 
Fig. 4 for the three systems at the same parameters as those of 
the systems used to calculate the transmission characteristics. 
The three systems exhibit three photonic bands. The width of 
the middle band depends strongly on the cavities resonant 
frequencies. By modulating the cavities frequency spacing, 
the system bandwidth can be  compressed  as shown in  Fig. 5  

 
Figure 3.  Transmission spectra through the coupled resonator structure for 

the three systems discussed. 

 
Figure 4.  Band structure of the three system considered. 

 
Figure 5.  Band structure of the propsed model after compression. 

for the new system. Figure 5 shows the possibility of 
compressing the bandwidth of the propagating pulse to zero 
and the band is thus flattened. In this way, by cascading the 
bandwidth filters, shown in Fig. 3, it becomes possible to 
reduce the group velocity of the propagating pulse to ideally 
zero. 

Upon modulating the refractive indices of the cavities 
dielectric rods, these bandwidths are compressed to ∆=0.329, 
∆=0.984, and ∆=1.359 respectively. This corresponds to a 
compression to 10.3%, 9.7%, and 9.9% of the original 
bandwidths in a respective order. The predictions from the 
quantitative analysis in the previous section are confirmed 
here. The compressible bandwidth increases by about 36% 
when the radius of the dielectric rods is reduced to 0.17 a for 
the triangular lattice system. As shown before, this is a direct 
result of increasing the width of the bandgap by means of 
optimizing the rods radius. 

In order to accommodate this higher bandwidth pulse, 
extra length of the waveguide is required for the process. The 
total length of the waveguide required for the photon pulse to 
be stopped is determined by both a static process and a 
dynamic one. The static part of the length requirement can be 
calculated from the delay-bandwidth constraint which is 
independent of the signal bandwidth to be compressed. The 
total length L found in [2] can be approximated to  

       ( )lL )/( mod ττΔ+≈ constant                   (9) 

where τmod is the required time for index modulation.          
(τmod/τ) is taken to be constant for a given form of modulation. 
Therefore, a longer waveguide (interpreted as longer periods) 
is required to allow for sufficient index modulation.  This 
extra length depends mainly on ∆. As an example, for the 
system parameters (∆=3.2, (τmod/τ)=5) previously studied [2] 
for a square lattice at ε=12.25, the required waveguide length 
in (9) is L≈(10+3.2*5)l. Therefore, increasing ∆ by x% 
requires increasing the length by x*(3.2/5.2)%. The 
corresponding requirements are 134% (triangular lattice with 
r=0.2a) and 204% (triangular lattice with r=0.17a) increase in 
the waveguide length.  It should be noted that this increase in 
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the waveguide length will compensate for the extra band. i.e. 
the final compressed bandwidth and the pulse delay are the 
same for both systems. Alternatively, one may not increase 
the waveguide length and accept the final bandwidth and 
pulse delay (which is worse than the results from the square 
lattice at εr=12.25). Even if a part of the waveguide length is 
sacrificed, there is another important factor that should be 
taken into consideration during system design, the group-
velocity dispersion.  

A waveguide carved in the bulk of PhC structure 
introduces a linear defect band [5]. In the design of such 
structures, it is important to choose a linear region of 
operation to avoid pulse dispersion and distortion. A slope 
variation (d2ω/dk2≠0) of the defect mode leads to group-
velocity dispersion [5]. Figure 6 shows the band structure of 
the new model along with the linear defect mode. The region 
of operation is zoomed in and shown in Fig. 7 for this design 
(r=0.17a) and for the previous one (r=0.2a).  

 

 
Figure 6.  Band structure of a triangular lattice structure (r = 0.17 a and 

εr=11.4). A linear defect mode is introduced by removing a single row of rods. 

 
Figure 7.  Group-velocity variation with respect to the perfect linear 

behaviour (dashed lines) in the region of interest. 

Although the new design shows slightly more dispersion, 
this is mainly at the edges of the operating region and this 
effect can be taken care of when selecting the pulse shape if 
this region is required for operation. 

IV. CONCLUSION 
The highlight of this work is the optimization of dynamic 

PhC structures for optical storage and processing. While the 
original model is based on a square lattice, a triangular lattice 
structure shows an advantage for compressing larger 
bandwidth pulses [3]. An optimization of this model is carried 
out here by investigation for the optimum radius of the 
dielectric rods that leads to maximum photonic bandgap, thus 
improving mode localization and increasing the quality 
factor. This radius is found to be 0.17a for a triangular lattice 
structure made of GaAs and operating at λ=1.55μm. Using 
this radius to design a dynamic model shows an increase in 
the compressible bandwidth by 36% over the previous model 
with r=0.2a. While no significant increase in group-velocity 
dispersion is observed in the new model at the operating 
region of interest, more length of the waveguide is required to 
accommodate the increase in the pulse bandwidth. 
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